
Journal of Computing Science and Engineering, Vol. 2, No. 3, September 2008, Pages 301-320.

A Practical Improvement to the Partial Redundancy

Elimination in SSA Form

Jongsoo Park

Department of Electrical Engineering, Stanford University, Stanford, CA 94305

jongsoo@stanford.edu

Jaejin Lee

School of Computer Science and Engineering, Seoul National University, Seoul 151-744, Korea

jlee@cse.snu.ac.kr

Received 15 February 2008; Accepted 11 July 2008

Partial redundancy elimination (PRE) is an interesting compiler optimization because of its
effectiveness and generality. Among many PRE algorithms, the one in static single assignment
form (SSAPRE) has benefits over other bit-vector-based PRE algorithms. It preserves the
properties of the SSA form after PRE and exploits the sparsity of the SSA form, resulting in
reduced analysis and optimization time. This paper presents a practical improvement of the
SSAPRE algorithm that further reduces the analysis and optimization time. The underlying
idea is removing unnecessary Φ’s during the Φ-Insertion phase that is the first step of SSAPRE.
We classify the expressions into three categories: confined expressions, local expressions, and
the others. We show that unnecessary Φ’s for confined and local expressions can be easily
detected and removed. We implement our locality-based SSAPRE algorithm in a C compiler
and evaluate its effectiveness with 20 applications from SPEC benchmark suites. In our
measurements, on average 91% of Φ’s identified by the original demand-driven SSAPRE
algorithm are unnecessary for PRE. Pruning these unnecessary Φ’s in the Φ-Insertion phase
makes our locality-based SSAPRE algorithm 1.8 times faster, on average, than the original
SSAPRE algorithm.

Categories and Subject Descriptors: Database Management [Heterogeneous Databases]

General Terms: Algorithm and Experiment

Additional Key Words and Phrases: Static Single Assignment Form, Partial Redundancy
Elimination

1. INTRODUCTION

Partial redundancy elimination (PRE) [Bodík et al. 1998; Briggs and Cooper 1994;

Copyright(c)2008 by The Korean Institute of Information Scientists and Engineers (KIISE).
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first page. Permission to
post author-prepared versions of the work on author’s personal web pages or on the noncommercial
servers of their employer is granted without fee provided that the KIISE citation and notice of
the copyright are included. Copyrights for components of this work owned by authors other than
KIISE must be honored. Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers, or to redistribute to lists, requires an explicit prior permission and/or a fee.
Request permission to republish from: JCSE Editorial Office, KIISE. FAX +82 2 521 1352 or
email office@kiise.org. The Office must receive a signed hard copy of the Copyright form.

302 Jongsoo Park and Jaejin Lee

Journal of Computing Science and Engineering, Vol. 2, No. 3, September 2008

Cai and Xue 2003; Chow 1997; Dhamdhere 1988; Drechsler and Stadel 1993;
Kennedy et al. 1999; Kennedy et al. 1998; Knoop et al. 1992; Knoop et al. 1994; Lin
et al. 2003; Lo et al. 1998; Morel and Renvoise 1979; Odaira and Hiraki 2004; Odaira
and Hiraki 2005; Paleri et al. 1998; Scholz et al. 2004; VanDrunen and Hosking 2004;
VanDrunen and Hosking 2004] is a powerful redundancy elimination algorithm that
performs both of global common subexpression elimination and loop-invariant code
motion. Due to its generality and the importance of redundancy elimination in compiler
optimizations, PRE has become an important component in optimizing compilers.

The SSAPRE algorithm proposed by [Chow et al. 1997; Kennedy et al. 1999] is the
first PRE algorithm preserving the properties of the static single assignment (SSA)
form [Cytron 1991]. SSAPRE’s originality is that it handles expressions, while other
previous optimizations in the SSA form handle variables for analyses and optimizations.

SSAPRE has benefits over the traditional bit-vector-based PRE: First, SSAPRE
exploits the sparsity of the representation in the SSA form. In a sparse form,
information is associated with only the place where it is needed and is propagated
through smaller number of steps. Although the sparse scheme has to give up the
parallelism exploited by the bitvector algorithms, the analysis time can be reduced
especially for large procedures due to the much smaller amount of information
processed than the bit-vector algorithms [Choi et al. 1991]. Second, we do not need
to transform the resulting program into an SSA form when subsequent SSA-based
optimizations are required after SSAPRE. For the bit-vector PRE algorithms, the
time-consuming SSA conversion has to be done again because they do not preserve
the properties of the SSA form [Choi et al. 1996].

The number of Φ-assignments inserted in the SSA form is a major factor that
determines the analysis time of SSAPRE steps. [Chow et al. 1997; Kennedy et al.
1999] proposed a demand-driven Φ insertion algorithm for SSAPRE to reduce the
number of Φ-assignments. However, the performance comparison between SSAPRE
and bit-vector PRE for SPEC95 benchmark suites in [Chow et al. 1997; Kennedy et
al. 1999] reports that SSAPRE is up to 2.8 times slower than bit-vector PRE. In
many programs, the majorities are small procedures, so the advantage of SSAPRE
for large procedures [Chow et al. 1997; Kennedy et al. 1999] may not be applicable to
the ordinary cases.

This paper presents a practical method to improve the analysis time of the original
SSAPRE algorithm. With our locality-based SSAPRE, we can make further significant
reduction of Φ-assignments resulting in reduced analysis time. The original SSAPRE
algorithm identifies Φ-assignments that are unsafe to insert new computation for
redundancy elimination at a later stage of SSAPRE. On the contrary, our locality-
based SSAPRE algorithm filters out most of unnecessary Φ-assignments at the first
stage, thus reduces the analysis time in the following stages.

We identify the expressions in the program into three categories: confined expressions,
local expressions, and the others. Φ-assignments for the confined expressions are
unnecessary to perform SSAPRE. A Φ-assignment for a local expression is unnecessary
if the expression does not post-dominate the Φ-assignment. The remaining expressions
are processed in the same way as the original SSAPRE algorithm. In our approach,
the complicated criteria in the original SSAPRE algorithm to identify unsafe Φ-

A Practical Improvement to the Partial Redundancy Elimination in SSA Form 303

Journal of Computing Science and Engineering, Vol. 2, No. 3, September 2008

assignments become a simple check of an expression’s locality and post-dominance
relationship.

We have implemented our method in a C compiler prototype and evaluated its
performance across 20 applications from SPEC95 and SPEC2K benchmark suites. In
our measurements, 91% of Φ-assignments are reduced, on average, compared to the
demand-driven Φ insertion algorithm in the original SSAPRE algorithm. As a result,
our locality-based SSAPRE algorithm is 1.8 times faster, on average, than the
original SSAPRE algorithm.

The rest of this paper is organized as follows: Section 2 explains preliminaries
required to discuss PRE and the SSA form, and the SSAPRE algorithm is outlined.
Section 3 describes our observation behind locality-based SSAPRE, theoretical facts,
and locality-based SSAPRE algorithm. Section 4 presents measurement results to
evaluate our algorithm against the original SSAPRE algorithm. Section 5 describes
related work. Finally, we conclude in Section 6.

2. BACKGROUND

In this section, we provide preliminaries required to discuss PRE and SSA form.
Then, we outline the original SSAPRE algorithm.

2.1 Preliminaries

Dominance Relation. A node n dominates a node m, denoted by n dom m, if
every path from the entry to m must go through n. A node n post-dominates a node
m, denoted by n pdom m, if every path from m to the exit must go through n. Every
node dominates and post-dominates itself. A node n strictly dominates a node m,
denoted by n sdom m, if n dom m and n ≠ m.

Dominance Frontier. The dominance frontier DF(n) of a node n is the set of all
nodes m such that n dominates a predecessor of m but does not strictly dominate m
[Cytron 1991].

The dominance frontier DF(S) of a set S, is defined by,

DF(S) = DF(n)

The iterated dominance frontier DF+(S) of a set S, is given by the limit of the
increasing sequence of sets of nodes,

DF1(S) = DF(S)

DFi+1(S) = DF(S ∪DFi(S))

DF+(S) = DFi(S)

Availability and Anticipability. An expression is available at some point q in the
program along path P, if P is a path leading to the point q and the expression occurs
at some point r on P with no changes to its operands between r and q on P. An
expression is partially available at q if there exists a path along which the expression
is available at q.

 i ∞→lim

304 Jongsoo Park and Jaejin Lee

Journal of Computing Science and Engineering, Vol. 2, No. 3, September 2008

An expression is fully available at q if it is available at q along every path from the
program entry to q.

An expression is anticipated at some point q in the program along path P, if P is a
path beginning at q and the expression occurs at some point r on P with no changes
to its operands between q and r on P. An expression is partially anticipated at q if
there exists a path along which the expression is anticipated at q. An expression is
fully anticipated (down-safe) at q if it is anticipated at q along every path from q to
the program exit. An expression is locally anticipated in a basic block if the block
contains at least one occurrence of the expression and before the first occurrence of
the expression in the block, none of the expression’s operands are modified.

2.2 SSAPRE

Similar to φ-assignments in SSA form [Cytron 1991], Φ-assignments play a key role
in SSAPRE. As φ-assignments are viewed as pseudo assignments to variables in SSA
form, a Φ-statement is an assignment to the hypothetical temporary h that summarizes
value changes of lexically identical expressions in the original program. After
SSAPRE has been performed, a Φ-assignment can be translated into a φ-assignment
to h. The temporary variable h is used to store the result of the corresponding
expression after PRE in SSA form. The use points of h are the places where a
computation of the expression is replaced by the use of h, and the definition points
are the places where a computation of the expression is saved to the temporary h. A
Φ-assignment is needed whenever different values of the lexically identical expression
may reach a control-flow join point.

Before applying SSAPRE, all critical edges in the control flow graph have been
removed by inserting an empty basic block at each critical edge. If there is an edge
from a basic block with multiple successors to a basic block with multiple predecessors,
we call it a critical edge [Knoop 1992]. In addition, construction of dominator tree
[Muchnick 1997] and iterated dominance frontiers (DF+) [Cytron 1991] have been
done. Figure 1(a) shows a sample program we use to illustrate SSAPRE. Figure 1(b)
is the program in SSA form. SSAPRE is performed on a program in SSA form by
following six separate steps: F-Insertion, Rename, DownSafety, WillBeAvail,
Finalize, and CodeMotion [Chow et al. 1997; Kennedy et al. 1999].

In the first step, Φ-Insertion, there are two cases when Φ-assignments for an
expression need to be inserted. One is the case when a Φ-assignment is inserted at
the expression’s iterated dominance frontier, DF+(S), where S is the set of occurrences
of the expression.

This is because multiple occurrences of the expression may reach the nodes in
DF+(S) and contribute to the definition of the temporary h. Figure 1(c) shows that
a Φ-assignment is inserted in basic blocks 2 and 5 because blocks 2 and 5 are in the
iterated dominance frontier of blocks 3, 4, and 5 where the expression x+y appears.

The other case is when there is a φ-assignment for a variable contained in the
expression. This φ-assignment indicates that modification of the value of the expression
reaches the merge point where the φ-assignment for the variable resides. In our
example in Figure 1(c), block 2 and block 5 are the nodes where the φ-assignments

A Practical Improvement to the Partial Redundancy Elimination in SSA Form 305

Journal of Computing Science and Engineering, Vol. 2, No. 3, September 2008

Figure 1. (a) A sample program. (b) The sample program in SSA form. (c) After Φ-Insertion. (d)
After Rename. (e) After Finalize. (f) After CodeMotion.

306 Jongsoo Park and Jaejin Lee

Journal of Computing Science and Engineering, Vol. 2, No. 3, September 2008

for variable x (contained in the expression x+y) are located. Since a Φ-assignment
has been already inserted due to the first case, no Φ-assignment is inserted again at
the same basic block.

However, if a Φ-assignment due to a variable assignment (i.e., a φ-assignment)
does not reach a later occurrence of the corresponding expression, the variable
assignment will not contribute to the value of the expression. Consequently, the Φ-
assignment will not contribute to any optimization in PRE, and will not correspond
to any φ-assignment for the temporary h. The merge point (where a φ-assignment for
a variable in the expression resides) needs a Φ-assignment when the Φ-assignment
reaches a later occurrence of the expression. In other words, the merge point needs a
Φ-assignment when the expression is partially anticipated. Therefore, the Φ insertion
for φ-assignments is performed in a demand-driven way [Chow et al. 1997; Kennedy et
al. 1999]. Both types of Φ insertion are performed in the same pass.

The next step, Rename, assigns SSA version numbers to h’s. New version numbers
are assigned to h’s that correspond to three kinds of occurrences of the expression:
real occurrences, Φ-assignments, and the operands of the Φ’s. Some operands of a Φ-
assignment are determined to be undefined and denoted by ⊥. Insertions of new real
occurrences of the expression for PRE are caused by the ⊥ operands. Figure 1(d)
shows the example after Rename. The variable h with its version number that
corresponds to the real occurrence of the expression is placed right to the real
occurrence in “[]”.

The next two steps, DownSafety and WillBeAvail, perform sparse computation of
global data flow values based on the SSA graph for h. DownSafety checks whether
each Φ for the expression is fully anticipated (i.e., down-safe [Knoop et al. 1992;
Knoop et al. 1994]). When we insert a computation in PRE, the computation must
be down-safe at the point of insertion [Kennedy 1972; Knoop et al. 1992; Knoop et al.
1994; Morel and Renvoise 1979]. In our example (Figure 1(d)), both Φ-assignments
in block 2 and 5 are down-safe. The next step, WillBeAvail, determines the Φ-
assignments where the computation of the expression will be available assuming that
insertions of the new computation for the expression have been performed at the
appropriate incoming edges of the Φ-assignments. It consists of two forward propagation
passes. The first pass computes can_be_available predicate for each Φ-assignment.
The flag is initialized to true for all Φ-assignments at the beginning. After this pass,
can_be_available is false for a Φ-assignment if and only if no down-safe insertion of
computations can make the expression available at the Φ-assignment. In our
example (Figure 1(d)), both Φ-assignments are can_be_available. The second pass
determines the Φ-assignments where the insertion of the computation is the latest to
minimize the live range of the introduced temporary for insertion. The pass uses a
later predicate that is similar to the notion of the LATERIN predicate in [Drechsler
and Stadel 1993].

The fifth step, Finalize, inserts computations of the expression using the results
from WillBeAvail. It determines the use-def relationship between SSA versions of the
real temporary. Figure 1(e) shows our example after Finalize. Insertions are
performed in block 1 and 4 in “[]”. Note that, in this step, a Φ-assignment whose
can_be_available predicate is false does not produce any temporaries. Although they

A Practical Improvement to the Partial Redundancy Elimination in SSA Form 307

Journal of Computing Science and Engineering, Vol. 2, No. 3, September 2008

are unnecessary Φ-assignments, they have slowed down SSAPRE up to this Finalize

step.
The last step, CodeMotion, transforms the code to optimized SSA form with the

results obtained in Finalize. Redundant computations of the expression are replaced
by the temporary t and the Φ-assignments for h’s are translated into φ-assignments
for t’s. Figure 1(f) shows our example after CodeMotion.

3. OUR APPROACH

In this section, we describe our approach to remove unnecessary Φ-assignments in
SSAPRE.

3.1 Observation

In addition to their minimal SSA form, Cytron et al. [1991] proposed pruned SSA
form where liveness analysis is performed to insert φ-functions for a variable V to a
node n ∈DF+(V) only when the variable is live at the node n. Similarly, in the
demand-driven Φ insertion algorithm [Chow et al. 1997; Kennedy et al. 1999], only
live Φ-assignments are considered to be inserted in the SSA form, resulting in reduced
compilation time. However, we can further reduce the number of Φ-assignments by
considering locality of the expression. Our idea is similar to the semi-pruned SSA
form proposed by Briggs et al. [1998]. The semi-pruned SSA form relies on the
observation that many variable names in a function are both defined and used
entirely within a single basic block. These variables are local to the basic block and
do not need any φ-function in the SSA form because there is no later use of the
variable. The semi-pruned SSA form can reduce almost as many number of φ-
functions as pruned SSA form with modest cost by just analyzing easily computable
locality of variables.

We observe that in many cases, occurrences of an expression appear only in one
basic block (About 95% of the lexically identified expressions in a program on
average belong to this category, see Table 8 in Section 4).

Definition 1 (Local Expression) If all occurrences of an expression E appear

only in one basic block b in the program, E is said to be local to block b. In other

words, E is a local expression at b.
Moreover, in many cases, all the variables contained in a local expression are

defined in the same basic block.

Definition 2 (Confined Expression) If all occurrences of an expression E appear

only in one basic block b in the program, and all variables contained in E are defined in

b, E is said to be confined to block b. In other words, E is a confined expression at b.
For a confined expression E in a basic block b, note that the definition of E’s

operand appears before its use in the occurrences of E because of the properties of
SSA form.

Unlike the case of local variables in semi-pruned SSA form, we cannot guarantee
that a local expression does not need any Φ-assignments in SSAPRE.

Consider the code in Figure 2(b). The code in Figure 2(a) results in the code in

308 Jongsoo Park and Jaejin Lee

Journal of Computing Science and Engineering, Vol. 2, No. 3, September 2008

Figure 2(b) after the demand-driven Φ-Insertion and Rename stages in SSAPRE
(Section 2). Suppose that expression x + y is local to block 3 in the original program.
There are two occurrences of the expression x + y in block 3. A Φ-assignment has
been inserted at block 2 in Φ-Insertion stage because block 2 is in the iterated
dominance frontier of block 3. Note that block 3 does not post-dominate block 2. The
expression x + y is neither available nor fully anticipated at the Φ-assignment in
block 2. This means that the Φ-assignment in block 2 will be identified not to be
can_be_available in WillBeAvail stage of SSAPRE (i.e., it will not contribute to any
SSAPRE optimizations). Thus, we can safely remove the Φ-assignment inserted at
block 2 resulting in reduction of SSAPRE analysis time. Figure 2(c) shows the code
after SSAPRE.

Now, consider the code in Figure 3(b), which is the result of applying Φ-Insertion

and Rename steps to the code in Figure 3(a). In contrast to the above case, note that
block 3 does post-dominate block 2 in this case. Even though the expression x + y is
local to block 3, we cannot remove the Φ-assignment at block 2. Since the Φ-
assignment at block 2 is down-safe and insertion of a new computation of x + y at
block 1 can make the expression available at block 2, can_be_available flag is true for
this Φ-assignment. In addition, the Φ-assignment is the point where the insertion of
the computation cannot be further postponed downward without introducing
unnecessary new redundancy. This will be identified in WillBeAvail stage. Therefore,

Figure 3. (a) A sample program for necessary Φ-assignment insertion. (b) After Rename. (c)
After CodeMotion.

Figure 2. (a) A sample program for spurious Φ-assignment insertion. (b) After Rename. (c)
After CodeMotion.

A Practical Improvement to the Partial Redundancy Elimination in SSA Form 309

Journal of Computing Science and Engineering, Vol. 2, No. 3, September 2008

we cannot remove the Φ-assignment at block 2. Figure 3(c) shows the code after
SSAPRE. The φ-assignment for t in block 2 can be removed because its arguments
are all identical.

In the following, we describe how our method filters many of unnecessary Φ-
assignments in the earlier stage, Φ-Insertion, by exploiting the properties of local
and confined expressions. Checking down-safety and setting the flag can_be_available
of the Φ-assignments for the local expressions in DownSafety and WillBeAvail stages
are reduced to checking post-dominance relationship between the occurrences and
Φ-assignments of the expression in Φ-Insertion stage of SSAPRE. We describe our
reasoning behind this criterion in the next section.

3.2 Theorems

In SSAPRE, the first pass in the WillBeAvail step is a forward propagation pass to
find the Φ-assignments where can_be_available predicate is false. Can_be_available is
false for a Φ-assignment if and only if no down-safe placement of computations can
make the expression available [Chow et al. 1997; Kennedy et al. 1999]. This is
essentially the same as finding insertion points that are not safe for the expression. A
point is safe for an expression if the expression is available or anticipated at that
point [Kennedy 1972; Paleri et al. 1998], i.e., a point is not safe for an expression if
the expression is neither available nor anticipated at that point.

Lemma 1 If v ∈DF+(u), then u does not strictly dominate v.
Proof of Lemma 1. For induction basis, obviously (u sdom v) when v ∈DF(u) by
the definition of DF.

For inductive step and inductive hypothesis, suppose that (u sdom w) when w
∈DFi(u).
If v ∈DFi+1(u), there are two cases: v ∈DF(u) or v ∈DF(DFi(u)).

When v ∈DF(u), obviously (u sdom v). The other case, v ∈DF(DFi(u)),
implies that there exist a node w such that w ∈DFi(u) and v ∈DF(w). If v = w, then
v ∈DFi(u).

By the inductive hypothesis, (u sdom v). If u = w, (u sdom v) because v
∈DF(u).

Otherwise (i.e., v ≠ w and u ≠ w), we assume u dom v and u ≠ v (i.e., u sdom v),
and draw a contradiction. Since v ∈DF(w), w dom p and (w sdom v) where p is
a predecessor of v. Since p is a predecessor of v and u dom v, u dom p. Since w dom

p and u dom p, either u dom w or w dom u. Since w ∈DFi(u) and by the inductive
hypothesis, (u sdom w).

This means that (u dom w) because u ≠ w. Thus, w dom u. This and u dom v
imply w dom v. This contradicts to v ∈DF(w). Therefore, (u dom v) or u = v,
i.e., (u sdom v).

Theorem 1 If an expression E in the program is confined to a basic block b, all Φ-
assignments inserted in Φ-Insertion step are unnecessary (i.e., not safe) for SSAPRE.

Proof of Theorem 1. Let O be the set of E’s operand definitions in b. E’s operand
definitions other than those in O do not reach the occurrences of E in b due to the

310 Jongsoo Park and Jaejin Lee

Journal of Computing Science and Engineering, Vol. 2, No. 3, September 2008

property of SSA form, i.e., they do not contribute to the value of the occurrences of E
in b. Thus, the Φ-assignments that correspond to φ-assignments for the operand
definition other than those in O are unnecessary for SSAPRE. All other Φ-assignments
will be inserted in DF+(b) because DF+(b) = DF+(O). We will show that these Φ-
assignments are not safe (i.e., neither fully available nor fully anticipated).

Suppose that E is fully anticipated at a node v ∈DF+(b). There must exist at least
one path beginning at v’s exit and the expression occurs at some point r on the path
with no changes to its operands between v’s exit and r on the path. However, the
occurrence of the expression in b cannot be such a point r because the expression’s
operands are modified between r and v’s exit. There must exist at least one occurrence
of the expression in a basic block other than b. This contradicts to the fact that E is
a confined expression. Thus, E is not fully anticipated (not down-safe) at a node v
∈DF+(b).

We show that E is not fully available at the entry of a node v ∈DF+(b). By
Lemma 1, (b sdom v), i.e., (b dom v) or b = v. If (b dom v), there exists a
path from the program entry to v that does not go through b. Along this path, E is
not available at the entry of v.

Thus, E is not fully available at the entry of v. Otherwise (b = v), there exists at
least one path P from the program entry to the entry of v that does not go through v.
Because E is local to v, E does not occur in P. Thus, E is not fully available at the
entry of v.

Therefore, those Φ-assignments are neither fully available nor fully anticipated.

Lemma 2 If E is a local expression at a basic block u, (u dom v) implies that E is

not fully available at any point in v.

Proof of Lemma 2. By the definition of dominance relation, there is a path P from the
program entry to v that does not go through u. Since E is a local expression at u, P
does not contain any occurrences of E. Therefore, E is not fully available at any point
in v.

Lemma 3 If E is a local expression at a basic block u, (u pdom v) implies that E

is not fully anticipated at any point in v.

Proof of Lemma 3. By the definition of post-dominance, there is a path P from v to
the program exit, which does not go through u. Moreover, u ≠ v. Since E is a local
expression at u, P does not contain any occurrences of E. Therefore, E is not fully
anticipated at any point in v.

Theorem 2 If E is a local expression at u and (u pdom v) such that v ∈DF+(u),
the Φ-assignment for E at v are unnecessary to perform SSAPRE.

Proof of Theorem 2. First, we show that the Φ-assignment is not fully available. Since
v∈DF+(u), (u dom v) or u = v by Lemma 1. If (u dom v), E is not fully
available at v’s entry by Lemma 2. Otherwise (i.e., u = v), there exists at least one
path P from the program entry to v that does not go through v. Because E is local to
u, E does not occur in P. Thus, E is not fully available at v. By Lemma 3, E is not
fully anticipated at v’s exit.

A Practical Improvement to the Partial Redundancy Elimination in SSA Form 311

Journal of Computing Science and Engineering, Vol. 2, No. 3, September 2008

Figure 4. New algorithm for Φ-Insertion.

312 Jongsoo Park and Jaejin Lee

Journal of Computing Science and Engineering, Vol. 2, No. 3, September 2008

Therefore, E is neither fully available nor fully anticipated at the Φ-assignment.

Theorem 3 If E is a local expression at u and (u pdom v) such that v contains a

φ -assignment to an operand of the occurrences of E, the Φ-assignment for E at v are

unnecessary to perform SSAPRE.

Proof of Theorem 3. Let p be the point where the Φ-assignment is located. By Lemma
3, E is not fully anticipated at the Φ-assignment. We show that the Φ-assignment is
not fully available at the Φ-assignment. Suppose that E is fully available at p. Since
E is local at u and E is fully available at p, u dom p (i.e., u dom v) and every path
from u to p does not contain any expression that modifies a variable contained in E.
By the property of SSA form, the definition di of the ith operand ai of the φ-
assignment dominates the ith predecessor of v. However, di cannot be on any path
from u to p because, if so, di modifies a variable contained in E. Thus, for di’s to reach
v, the paths from di’s to v must go through u because u dom v. This means that
multiple versions of a variable (ai’s) reach u contradicting to the property of SSA
form.

Therefore, E is neither fully available nor fully anticipated at the Φ-assignment.

3.3 Algorithms

Among the Φ-assignments for an expression E inserted by the original SSAPRE Φ
insertion algorithm [Chow et al. 1997; Kennedy et al. 1999], the Φ-assignments that
satisfies one of the following conditions will not be inserted by our new Φ insertion
algorithm:

•When expression E is a confined expression.
•When expression E is a local expression at a basic block b, and b does not post-

dominate the Φ-assignment.

Figure 4 shows our new Φ-Insertion algorithm. Similar to the Φ-Insertion algorithm
proposed by [Chow et al. 1997; Kennedy et al. 1999], the set DFphis[i] keeps track of
the Φ-assignments inserted on the iterated dominance frontier of the occurrences of
expression Ei. The set Varphis[i][j] keeps track of the Φ-assignments inserted due to
the occurrences of φ-assignments for the jth variable in Ei for demand-driven Φ
insertion.

In our algorithm, the set Occs[i] contains the occurrences of expression Ei. The set
Blocks[i] contains the basic blocks that contain the occurrences of expression Ei. The
predicate isConfined [i] tells us whether expression Ei is a confined expression or not.
Similarly, the predicate isLocal[i] tells us whether expression Ei is a local expression.
The function def(V) returns the defining assignment of a variable V. The predicate
bypass tells later steps of SSAPRE that they do not consider expression Ei for
optimization because only one occurrences of the expression appears in the program,
and there are no Φ-assignments inserted for the expression.

To check post-dominance relationship, a post-dominator tree needs to be built
before SSAPRE, but building the tree does not introduce much overhead. There are
efficient algorithms building dominator trees [Lengauer and Tarjan 1979]. The post-
dominator tree is also needed for other optimizations, such as dead code elimination

A Practical Improvement to the Partial Redundancy Elimination in SSA Form 313

Journal of Computing Science and Engineering, Vol. 2, No. 3, September 2008

[Cytron 1991], which is usually accompanied with PRE [Muchnick 1997]. In fact,
the time taken to build the post-dominator tree is amortized by the time savings due
to less Φ-assignments in the later SSAPRE steps.

4. EVALUATION

We have implemented the original SSAPRE algorithm and our locality-based SSAPRE
algorithm in a research C compiler written in C++. The C compiler uses Edison
Design Group’s C/C++ front-end [Edison Design Group 2005]. The abstract syntax
tree from the front-end is converted to the compiler’s own abstract syntax tree (i.e.,
high-level IR). This high-level IR is converted to the low-level IR for code generation
and register allocation, which is similar to the three address code [Muchnick 1997].
Then, the low-level IR is transformed into the SSA form on which the base SSAPRE
and locality-based SSAPRE algorithms are implemented. Our base implementation of
SSAPRE includes the practical improvements mentioned in [Chow et al. 1997;
Kennedy et al. 1998; 1999], such as demand-driven Φ insertion and delayed renaming.
Since there are no other optimizations than SSAPRE implemented in the compiler,
our evaluation results show only the effects of SSAPRE.

Our measurement runs on a machine with a 3.20 GHz Intel Xeon CPU running
Linux operating system. The applications evaluated are from SPECint2K and SPECfp2K
benchmark suites. In addition, SPECint95 applications are also evaluated for a
comparison to the experiment in [Kennedy et al. 1999].

Figure 5 shows the number of Φ-assignments inserted by our locality-based SSAPRE
algorithm. The numbers are normalized to the number of Φ-assignments from the
original SSAPRE algorithm (base SSAPRE). The bar labeled confined represents
the number of remaining Φ-assignments after identifying confined expressions in our
locality-based SSAPRE. The other bar labeled local represents the number of
remaining Φ-assignments after identifying local expressions with the post-dominance

Figure 5. The number of Φ-assignments in our locality-based SSAPRE after exploiting confined

expressions and local expressions. The numbers are normalized to the original SSAPRE.

314 Jongsoo Park and Jaejin Lee

Journal of Computing Science and Engineering, Vol. 2, No. 3, September 2008

analysis in addition to identifying confined expressions. On average, we reduce about
86% of the Φ-assignments by identifying confined expressions, and further reduce
about 5% of the Φ-assignments by identifying local expressions that satisfies Theorem
2 or Theorem 3.

We compare the analysis time of base SSAPRE to that of our locality-based
SSAPRE.

We measure the execution time of all the 6 steps of SSAPRE: Φ-Insertion, Rename,

DownSafety, WillBeAvail, Finalize, and CodeMotion. The result is shown in Figure 7.
The analysis time of DownSafety and WillBeAvail phases are not shown in the figure
because they have negligible analysis time. On average, our locality-based SSAPRE
is 1.8 times faster than original SSAPRE. The actual analysis time of our SSAPRE is
from 11 ms (compress) up to 14690 ms (gcc).

Figure 6. Correlation between the speedup of our locality-based SSAPRE over the original

SSAPRE and the number of lexically identical expressions.

Figure 7. Breakdown of the analysis time taken by SSAPRE.

A Practical Improvement to the Partial Redundancy Elimination in SSA Form 315

Journal of Computing Science and Engineering, Vol. 2, No. 3, September 2008

Our locality-based SSAPRE has a notable effect on the analysis time of Rename

and Finalize steps due to the reduction in the number of Φ-assignments. Note that
the time taken by Φ-Insertion step in our algorithm is also reduced even though it
includes the time to build the post-dominator tree for identifying local expressions.
However, the speedup of Φ-Insertion step is not that significant compared to Rename

and Finalize steps because it has to collect all of the real occurrences of expressions
and check the properties of the expressions. In addition, since there are the same
number of inserts, saves and reloads of expressions after Finalize in base SSAPRE
and locality-based SSAPRE, our method does not have much effect on CodeMotion

either.
In the original SSAPRE algorithm, 51% and 9% of the analysis time are spent on

Φ-Insertion and CodeMotion, respectively. Consequently, the analysis time has not
been reduced as much as the number of Φ-assignments.

Figure 6 shows the correlation between the speedup and the number of lexically
identified expressions. The speed up of our locality-based SSAPRE over original
SSAPRE is from 1.14 (compress) up to 4.34 (gcc). Applications having more lexically
identified expressions have larger speedup. This is because the time spent on Φ-
Insertion is more effectively amortized by the time spent on the later steps of
SSAPRE due to the reduction in the number of Φ-assignments.

Figure 8 shows the characteristics of the applications with regards to the lexically
identified expressions in SSAPRE. Column A shows the number of program units in
each application.

For each application, column B gives the total number of lexically identified different
expressions in the whole program. Column C gives the number of local expressions
among the total lexically identified expressions. On average, about 96% are local
expressions and they are candidates for removal in our locality-based SSAPRE. This
high percentage of local expressions is due to temporary variables generated by the
compiler. Expressions having an arbitrary number of operands are broken into
simple intermediate representation (IR) statements with the aid of temporary
variables. Many middle-level compiler IRs, including the three address codes (this is
our case), have statements with limited number of operands. Such a simple middle-
level IR reduces the complexity of later compiler optimization phases, and IR
statements with limited number of operands is more close to the instructions in the
target machine.

Column D shows the number of confined expressions in each application. About
95% of the local expressions are confined expressions. The large number of local
expressions and confined expressions accounts for the reduction of Φ-assignments in
our locality-based SSAPRE. As mentioned in Section 7.2 of [Kennedy et al. 1999], if
an expression does not have any Φ-assignments, and not only occurs in one basic
block but also occurs once, we can bypass the rest of SSAPRE steps for the expression.
Column E gives the number of bypassed expressions in each application. In our
locality-based SSAPRE, about 94% of the expressions are bypassed on average.

Overall, our locality-based SSAPRE algorithm effectively removes unnecessary Φ-
assignments and is 1.8 times faster, on average, than the original SSAPRE algorithm.
The speedup of our locality-based SSAPRE algorithm over the traditional bit-vector

316 Jongsoo Park and Jaejin Lee

Journal of Computing Science and Engineering, Vol. 2, No. 3, September 2008

PRE algorithm is notable too. When we extrapolate the subset of our result on

SPECint95 to the experimental in [Kennedy et al. 1999], the speedup is 2.65 on

average.

5. RELATED WORK

PRE was introduced by Morel and Renvoise [1979]. PRE is a powerful optimization

technique that integrates loop invariant movement and common subexpression

elimination together. Because of its generality, PRE has become an important

component in many global optimizers and many efforts have been devoted to PRE.

Theoretical refinement and simplification of PRE has been discussed in the

literature. Morel and Renvoise’s algorithm is not optimal in the sense that it does not

eliminate all partial redundancies that exist in a program. Taking the safety issue

into account, Dhamdhere [1988] provided a solution that eliminates all partial

Figure 8. Characteristics of lexically identified expressions in the applications.

A Practical Improvement to the Partial Redundancy Elimination in SSA Form 317

Journal of Computing Science and Engineering, Vol. 2, No. 3, September 2008

redundancies, using the concept of edge placement. Knoop et al. [1992] proposed a
descendant of PRE, called lazy code motion that avoids the unnecessary code motion
inherent in the original PRE. This feature is important because it can reduce register
pressure. In addition, the original PRE algorithm is complicated because it needs
bidirectional data-flow analysis. Paleri et al. [1998] proposed a simple PRE algori
thm. Their algorithm uses unidirectional data-flow analysis and is based on well
known concepts, such as availability, anticipability, partial availability, and partial
anticipability.

PRE is more conservative than loop invariant code motion because it is able to
move out of the loop only those invariants that are anticipated. Bodík et al. [1988]
mentioned 73% of loop-invariant statements cannot be eliminated by PRE. Bodík et
al. introduced complete PRE that performs not only code motion but also code
restructuring. Even more redundancies can be eliminated by speculative PRE using
profile or run-time information [Lin 2003; Cai and Xue, 2003; Scholz et al. 2004;
Odaira and Hiraki 2005].

Another inherent problem of PRE is that PRE handles only lexically identical
expressions as redundancy elimination candidates. Briggs and Cooper [1994] pointed
out this problem. PRE and global value numbering (GVN) are applied into different
redundancy cases, and none is a superset of another [Odaira and Hiraki 2004]. Value
Driven Redundancy Elimination [Simpson, 1996] and Partial Value number
Redundancy Elimination [Odaira and Hiraki 2004] are proposed to combine PRE
and GVN.

The difficulty of combining PRE and SSA form comes from the fact that PRE’s
optimization focus is on expressions instead of variables. After PRE, we need to
convert the program into SSA form again if subsequent SSA-based optimizations are
required. SSAPRE proposed by [Chow et al. 1997; Kennedy et al. 1999] is the first
algorithm that removes this complication and handles expressions in SSA form. they
extended their approach to other expression related optimizations [Kennedy et al.
1998; Lo et al. 1998].

VanDunen et al. [2004] proposed the first PRE + GVN algorithm that preserves
SSA property. They pointed out that SSAPRE is based on a strict assumption about
SSA form that can be broken by other SSA-based algorithms, such as constant
propagation. They proposed a solution that works without the assumption [VanDrunen
and Hosking 2004]. However, their algorithm does not cover all redundancies described
by Odaira and Hiraki [2004], and is not sparse compared to SSAPRE where
computations occur only at the Φ merge points.

Our approach does not widen the coverage of SSAPRE, but it is a way to reduce
the analysis time of SSAPRE significantly. Our approach can be extended to other
expression-based data-flow problems in SSA form.

6. CONCLUSION

We presented a locality-based SSAPRE algorithm in this paper. It identifies local
expressions whose occurrences appear only in one basic block. Among those local
expressions, confined expressions, whose operand definitions also appear in the same
basic block, do not need any Φ-assignments at all. For the remaining local expressions,

318 Jongsoo Park and Jaejin Lee

Journal of Computing Science and Engineering, Vol. 2, No. 3, September 2008

the algorithm checks post-dominance relationship between the expression and
corresponding Φ-assignments to identify unnecessary Φ-assignments. In general, full
safety analysis will be required in the original SSAPRE to identify unnecessary Φ-
assignments even for the local expressions. Our locality-based SSAPRE algorithm
identifies most of unnecessary Φ-assignments for local expressions with simple
occurrence and post-dominance checks. By removing unnecessary Φ-assignments in
the first step of SSAPRE, the analysis time of the remaining SSAPRE steps is
significantly reduced resulting in the improvement of the whole SSAPRE analysis
time.

We observed that more than 96% of the lexically identified expressions for PRE in
original SSAPRE are local expressions, and about 91% of the Φ-assignments inserted
by the original SSAPRE algorithm are unnecessary. In our measurements with the
applications from SPEC benchmark suites, our locality-based SSAPRE algorithm is
1.8 times, on average, faster than the original SSAPRE algorithm.

ACKNOWLEDGEMENT

This work was partly supported by the IT R&D program of MIC/IITA [2006-S-040-
01, Development of Flash Memory-based Embedded Multimedia Software] and by
the Ministry of Education, Science and Technology under the BK21 Project. ICT at
Seoul National University provided research facilities for this study.

REFERENCES

BODÍK, R., GUPTA, R., AND SOFFA, M. L. 1998. Complete Removal of Redundant Expressions.
In Proceedings of the ACM SIGPLAN 1998 Conference on Programming Language Design

and Implementation, 1−14.
BRIGGS, P. AND COOPER, K. D. 1994. Effective Partial Redundancy Elimination. In Proceedings

of the ACM SIGPLAN 1994 Conference on Programming Language Design and

Implementation, 159−170.
BRIGGS, P., COOPER, K. D., HARVEY, T. J., AND SIMPSON, L. T. 1998. Practical Improvements

to the Construction and Destruction of Static Single Assignment Form. Software Practice

and Experience, 28(8):859−881.
CAI, Q. AND XUE, J. 2003. Optimal and Efficient Speculation-Based Partial Redundancy

Elimination. In Proceedings of the International Symposium on Code Generation and

Optimization, 91−102.
CHOI, J.-D., CYTRON, R., AND FERRANTE, J. 1991. Automatic Construction of Sparse Data Flow

Evaluation Graphs. In Proceedings of the 18th ACM SIGPLAN-SIGACT symposium on

Principles of Programming Languages, 55−66.
CHOI, J.-D., SARKAR, V., AND SCHONBERG, E. 1996. Incremental computation of static single

assignment form. In Proceedings of the 6th International Conference on Compiler

Construction, 223−237.
CHOW, F., CHAN, S., KENNEDY, R., LIU, S.-M., LO, R., AND TU, P. 1997. A New Algorithm for

Partial Redundancy Elimination Based on SSA Form. In Proceedings of the ACM SIGPLAN

1997 conference on Programming Language Design and Implementation, 273−286.
CYTRON, R., FERRANTE, J., ROSEN, B. K., WEGMAN, M. N., AND ZADECK, F. K. 1991. Efficiently

Computing Static Single Assignment Form and the Control Dependence Graph. ACM

Transactions on Programming Language and Systems, 13(4):451−490.
DHAMDHERE, D. M. 1988. A Fast Algorithm for Code Movement Optimization. ACM SIGPLAN

Notices, 23(10):172−180.

A Practical Improvement to the Partial Redundancy Elimination in SSA Form 319

Journal of Computing Science and Engineering, Vol. 2, No. 3, September 2008

DRECHSLER, K.-H. AND STADEL, M. P. 1993. A variation of Knoop, Ruthing, and Steffen’s Lazy
Code Motion. SIGPLAN Notices, 28(5):29−38.

Inc. Edison Design Group. EDG C/C++ Compiler Front End. Website, 2005. http://www.edg.com.
KENNEDY, K. 1972. Safety of Code Motion. International Journal of Computer Mathematics, 3(2

and 3):117−130.
KENNEDY, R., CHAN, S., LIU, S.-M., LO, R., TU, P., AND CHOW, F. 1999. Partial Redundancy

Elimination in SSA Form. ACM Transactions on Programming Language and Systems,
21(3):627−676.

KENNEDY, R., CHOW, F. C., DAHL, P., LIU, S.-M., LO, R., AND STREICH, M. 1998. Strength
Reduction via SSAPRE. In Proceedings of the 7th International Conference on Compiler
Construction, 144−158.

KNOOP, J., RÜTHING, O., AND STEFFEN, B. 1992. Lazy Code Motion. In Proceedings of the ACM
SIGPLAN 1992 conference on Programming Language Design and Implementation, 224−
234.

KNOOP, J., RÜTHING, O., AND STEFFEN, B. 1994. Optimal Code Motion: Theory and Practice.
ACM Transactions on Programming Language and Systems, 16(4):1117−1155.

LENGAUER, T. AND TARJAN, R. E. 1979. A fast algorithm for finding dominators in a owgraph.
ACM Transactions on Programming Language and Systems, 1(1):121−141.

LIN, J., CHEN, T., HSU, W.-C., YEW, P.-C., JU, R. D.-C., NGAI, T.-F., AND CHAN, S. 2003. A
Compiler Framework for Speculative Analysis and Optimizations. In Proceedings of the
ACM SIGPLAN 2003 Conference on Programming Language Design and Implementation,
289−299.

LO, R., CHOW, F., KENNEDY, R., LIU, S.-M., AND TU, P. 1998. Register Promotion by Sparse
Partial Redundancy Elimination of Loads and Stores. In Proceedings of the ACM
SIGPLAN 1998 Conference on Programming Language Design and Implementation, 26−
37.

MOREL, E. AND RENVOISE, C. 1979. Global Optimization by Suppression of Partial Redundancies.
Communications of ACM, 22(2):96−103.

MUCHNICK, S. S. 1997. Advanced Compiler Design and Implementation. Morgan Kaufmann
Publishers, San Francisco.

ODAIRA, R. AND HIRAKI, K. 2004. Partial Value Number Redundancy Elimination. In
International Workshop on Languages and Compilers for Parallel Computing (LCPC’04),
409−423.

ODAIRA, R. AND HIRAKI, K. 2005. Sentinel PRE: Hoisting beyond Exception Dependency with
Dynamic Deoptimization. In Proceedings of the International Symposium on Code generation
and Optimization, 328−338.

PALERI, V. K., SRIKANT, Y. N., AND SHANKAR, P. 1998. A Simple Algorithm for Partial
Redundancy Elimination. SIGPLAN Notices, 33(12):35−43.

SCHOLZ, B., HORSPOOL, N., AND KNOOP, J. 2004. Optimizing for Space and Time Usage with
Speculative Partial Redundancy Elimination. In Proceedings of the 2004 ACM SIGPLAN/
SIGBED Conference on Languages, Compilers, and Tools for Embedded Systems, 221−
230.

SIMPSON, L. T. 1996. Value-Driven Redundancy Elimination. PhD thesis, Rice University.
VANDRUNEN, T. AND HOSKING, A. 2004. Value-Based Partial Redundancy Elimination. In

Proceedings of International Conference on Compiler Construction, 167−184.
VANDRUNEN, T. AND HOSKING, A. L. 2004. Anticipation-based Partial Redundancy Elimination

for Static Single Assignment Form. Software: Practice and Experience, 34(15):1413−1439.

320 Jongsoo Park and Jaejin Lee

Journal of Computing Science and Engineering, Vol. 2, No. 3, September 2008

Jongsoo Park is a PhD candidate at Stanford University. His research
interests include compilers and energy-efficient computer architectures.
Park received an MS in electrical engineering from Stanford University.
Contact him at jongsoo@stanford.edu.

Jaejin Lee is an associate professor in the school of Computer Science
and Engineering at Seoul National University. He received his PhD
degree in Computer Science from the University of Illinois at Urbana-
Champaign (UIUC) in 1999.
He received an MS degree in Computer Science from Stanford University
in 1995 and a BS degree in Physics from Seoul National University in 1991.
After obtaining his PhD degree, he spent a half year at the UIUC as a
visiting lecturer and postdoctoral research associate. He was an assistant
professor in the department of Computer Science and Engineering at
Michigan State University from January 2000 to August 2002 before
joining Seoul National University. His research interests include compilers,
computer architectures, parallel processing, and embedded systems.

