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The dynamic cast operation allows flexibility in the design and use of data management
facilities in object-oriented programs. Dynamic cast has an important role in the implementa-
tion of the Data Management Services (DMS) of the Mission Data System Project (MDS), the
Jet Propulsion Laboratory’s experimental work for providing a state-based and goal-oriented
unified architecture for testing and development of mission software. DMS is responsible for the
storage and transport of control and scientific data in a remote autonomous spacecraft. Like
similar operators in other languages, the C++ dynamic cast operator does not provide the
timing guarantees needed for hard real-time embedded systems. In a recent study, Gibbs and
Stroustrup (G&S) devised a dynamic cast implementation strategy that guarantees fast
constant-time performance. This paper presents the definition and application of a co-
simulation framework to formally verify and evaluate the G&S fast dynamic casting scheme
and its applicability in the Mission Data System DMS application. We describe the systematic
process of model-based simulation and analysis that has led to performance improvement of the
G&S algorithm’s heuristics by about a factor of 2. In this work we introduce and apply a library
for extracting semantic information from C++ source code that helps us deliver a practical and
verifiable implementation of the fast dynamic casting algorithm. 

Categories and Subject Descriptors: Programming Tools and Techniques [Programming
Language]

General Terms: C++ Programming Techniques, Embedded Flight Software, Program
Verification

Additional Key Words and Phrases: Constant Time Dynamic Cast, Autonomous Embedded
Systems, Model-based Software Development, Static Analysis

1. INTRODUCTION 

ISO Standard C++ [ISO/IEC 14882 International Standard 1998] has become a
common choice for hard real-time embedded systems such as the Jet Propulsion
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Laboratory’s Mission Data System [Ingham et al. 2004]. This is so because ISO C++

offers efficient abstraction model, good hardware use, and predictability. C++’s
model of computation has helped engineers deliver more correct, maintainable, and
comprehensible software compared to code relying on lower-level programming
concepts [Stroustrup 2004]. However, several C++ features are usually considered
unsuitable for programming real-time systems because they do not guarantee predi-
cable constant-time performance [Goldthwaite 2006]. ISO C++ does not provide the
necessary timing guarantees for free store (heap) allocation, exception handling, and
dynamic casting. In particular, the most common compiler implementations of the
dynamic cast operator traverse the representation of the inheritance tree (at run
time) searching for a match. Such implementations of dynamic cast are not predictable
and are unsuitable for real-time programming. Gibbs and Stroustrup (G&S) [Gibbs
and Stroustrup 2006] describe a technique for implementing dynamic cast that delivers
significantly improved and constant-time performance. The key idea is to replace the
runtime search through the class hierarchy with a simple (constant-time) calculation,
much as the common implementations of the C++ virtual function calls search the
class hierarchy at compile time to reduce the runtime action to a simple array
subscripting operation. In the G&S scheme, a heuristic algorithm assigns an integer
type ID at link time to each class. The type ID assignment rules guarantee that at
run time a simple modulo operation can reveal the type information and check the
validity of the cast. The requirements for the heuristics assigning the type IDs are
that:

(1) They must keep the size of the type ID to a small number of bits.A 64-bit type 
ID should be sufficient for very large class hierarchies 

(2) Avoid conflicts and type ID assignments that create ambiguous or erroneous
type resolution at run time 

(3) Handle virtual inheritance 

There are four heuristic schemes and a few possible optimizations suggested in
[Gibbs and Stroustrup 2006]. However, none of those heuristics guarantee the best
solution for every possible class hierarchy. The quality of the type ID assignment
heuristics has a critical importance for the performance of the G&S scheme. With
better heuristics, a smaller type ID size would be sufficient to facilitate complex and
large class hierarchies that would certainly need a significantly bigger type ID size
with a poor assignment scheme. The main contribution of this work is to present how
the algorithm optimization problem encountered has been successfully automated
and moreover that its automation has led us to quick but significant improvements
of the initial scheme. To guarantee a practical and verifiable implementation of the
fast dynamic casting scheme, we introduce and apply our innovative expression
template [Veldhuizen 1995]-based approach for extracting semantic information
from the C++ source code. 

As pointed out by Lowry [Lowry 2002], the increasing complexity of future space
missions, such as the Mars Science Laboratory [Volpe 2005] and Project Constellation
[Stoica et al. 2005], raises concerns whether it is possible to establish their reliability
in a cost-effective manner. Lowry’s analysis indicates that at the present moment the
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verification and certification cost of mission critical software exceeds its development
cost. Perrow [Perrow 1999] studies the risk factors in the modern high technology
systems. His work identifies two significant hazard dimensions: interactions and
coupling. Complex interactions represent unexpected and unknown sequences and
thus cannot be entirely comprehensible at the time of system development. A tightly-
coupled system has a number of time-dependent processes that cannot tolerate
delays. Perrow classifies space missions in the riskiest category since both hazard
factors are present. The dominant paradigms for software development, assurance,
and management at NASA rely on the principle “estwhat-you-fly and fly-what-you-
test”. Born out of experience and hindsight, this methodology had been applied in a
large number of robotic space missions at the Jet Propulsion Laboratory. For such
missions, it has proven suitable in achieving adherence to some of the most stringent
standards of man-rated certification such as the DO-178B [RTCA 1992], the Federal
Aviation Administration (FAA) software standard. Its Level A requirements demand
100% coverage of all high and low level assurance policies. However, the present
certification methodologies are prohibitively expensive for systems of high complexity
[Schumann and Visser 2006]. 

In this paper we present a co-simulation framework based on the SPIN model
checker [Holzmann 2003] to simulate, evaluate, and formally verify the G&S fast
dynamic casting algorithm and its application in mission critical code such as the
Data Management Services [Wagner 2005] of the Mission Data System. The aim of
the Mission Data System is to provide a unified state-based and goal-oriented
architecture for building complete data and control systems for autonomous space
missions. The framework’s state-and model-based methodology and its associated
systems engineering processes and development tools have been successfully applied
on a number of test systems including the physical rovers Rocky 7 and Rocky 8 and
a simulated Entry, Descent, and Landing (EDL) system for the Mars Science
Laboratory mission. We use the feedback from the model checker to perform systematic
analysis of the G&S scheme and look for improvements to the heuristics for type ID
assignment. SPIN is an on-the-fly, linear-time logic model-checking tool that was
designed for the formal verification of dynamic systems with asynchronously executed
processes. Model-checking tools have been widely applied for the verification of a
large variety of systems, including flight software [Gluck and Holzmann 2002],
network protocols [Musuvathi and Engler 2004], and scheduling algorithms [Ruys
2003]. We are unaware of work suggesting its use for the analysis and optimization of
compiler heuristics. Compiler verification usually focuses on seeking a proof on the
preservation of the program semantics during the various compiler passes [Lerner et
al. 2003]. Our work presents the application of a model-checking tool for the analysis
and refinement of the combinatorial optimization problem posed by the G&S type
ID assignment scheme. Our co-simulation framework consists of the following
components: 

(1) An abstract model of the G&S type ID assignment heuristics 
(2) A procedure for exhaustive search of the state space discovering the best type ID

assignment 
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The analysis of the heuristics simulation performed in SPIN provides us with ideas of
possible improvements to the G&S type ID assignment. We include and evaluate the
proposed improvements in the abstract model in order to seek refinement of the G&S
type ID assignment scheme. The experiments we have executed show that the G&S
priority assignment is not optimal with respect to the best possible type ID assign-
ment where non-virtual multiple inheritance is used. While potentially dangerous if
not constructed carefully, such hierarchies happen to be of significant practical
importance [Stroustrup 2000]. Based on our experiments, we suggest optimizations
that lead to significant improvement of the G&S heuristics performance. We rely on
model checking for the validation, simulation, and analysis of the fast dynamic
casting algorithm. Due to the heavy computational overhead and the state space
explosion problem, the application of formal verification techniques is limited to
abstract models of the system’s design. In this work we introduce and apply an
innovative expression-template based technique for extracting semantic information
from the C++ source code in order to deliver a practical and verifiable implementa-
tion of the G&S fast dynamic casting scheme. This paper makes the following
contributions: 

(1) Introduces the use of a co-simulation framework based on model-checking for the
analysis and improvement of a compiler-heuristics optimization problem 

(2) Verifies and analyzes the G&S C++ fast dynamic casting scheme and its appli-
cation in mission critical code such as the MDS Data Management Services 

(3) Implements optimizations to the G&S heuristics leading to the discovery of
optimal type ID assignment in 85% of the class hierarchies, in contrast to 48%
for the original G&S algorithm 

(4) Presents the design and application of an innovative expression template -based
approach for extracting semantic information from the application’s source code
in order to guarantee a practical and verifiable implementation of the fast
dynamic casting scheme 

The rest of the paper is organized as follows: section 2: a brief description of the G&S
fast dynamic cast algorithm, section 3: our approach to co-simulation and improve-
ments to the G&S heuristics, section 4: discussion on the challenges of mission
critical code and the applicability of the G&S dynamic cast section 5: performance
results for the G&S algorithm and the proposed improvements, section 6: design and
implementation of Basic Query: a library for extracting semantic information from
C++ programs and its application for delivering a practical and verifiable fast
dynamic cast operation, and section 7: conclusion. 

2. FAST DYNAMIC CASTING ALGORITHM 

The G&S fast constant-time implementation of the dynamic cast operator works as
follows: at link time, a static integer type ID number, preferably 32 or 64-bit long, is
assigned to each class. The ID numbers are selected so that the operation ida modulus

idb yields zero if and only if the class with ida is derived from the class with idb. This
is done by exploiting the uniqueness of factorization of integers into prime factors.
Each class is assigned a key prime number. The type ID of a class is calculated by
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multiplying its key number with the key numbers of each of its base classes. In the
cases where a class contains more than a single copy of a base class, the type ID is
computed by taking the square of the corresponding base class ID. The only constraint
of the approach is the desire to limit the ID size to fit the machine’s built-in integer
types. The key primes are not required to be unique and the same prime key can be
used for classes that belong to different groups (i.e. do not share common descendants).
Gibbs and Stroustrup suggest four approaches for assigning the type IDs in a space-
efficient manner. Each method is based on a preliminary computation of the priority
factor of each class. The priority reflects the class impact on the growth of the type
ID numbers in the hierarchy. Thus, classes with greater number of descendants should
receive higher priority and smaller key prime number values respectively. The four
possible schemes suggest that: 

1. The priority of a class is the maximum number of ancestors that any of its
descendants has. This scheme was chosen for the initial implementation and
testing of the G&S algorithm and also closely followed in the implementation of
the abstract model used for our simulation 

2, 3, 4. If a range of primes is assigned to every level with wider levels receiving
larger initial values, then each node could be assigned an additional value that is
proportional to the logarithm of the (2. minimum, 3. mean, 4. maximum) prime
in its level. Priorities of hierarchy leaves are computed by taking the sum of these
additional values for the leaf itself and all of its ancestor classes 

After the priority of each class has been computed, the classes with the highest
priority get the smallest prime numbers. According to this scheme, prime numbers
can be reused only if there are two classes on the same level of the class hierarchy and
only if they do not share common descendants, they are not siblings, and also that
none of their parents share a common descendant. According to the ID assignment
rules, we know that: 

(1) idx = kx × (ka)2 
×

 
ka1 × 

(kb)2 
×

 
kb1 × 

kc 

(2) idy = ky ×
 
kc ×

 
kc1 × 

(kd)2 
×

 
kd1 × 

kb 

(3) idz = kz ×
 
kd ×

 
kd1 × 

kc 

As an example, let us consider the class hierarchy presented in Figure 1. Given a set
Sclasses with 11 classes in the hierarchy and the set of the first 11 prime numbers P =
{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31}, we must assign each class V a key kv ∈ P such
that, the maximum of the set idleaf = {idx, idy, idz}, the set consisting of the ID
numbers of all leaf nodes in Sclasses, is minimal. As we already know, prime numbers
need not be unique for each class and can be reused in same circumstances. 

Figure 1. A class hierarchy with 11 classes. 
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3. A CO-SIMULATION FRAMEWORK 

The goals of the co-simulation framework are to validate the main invariants of the
G&S heuristics, improve its performance, and establish its applicability in mission
critical systems. The co-simulation process in the framework (Figure 2) consists of
three consecutive stages: verification, evaluation, and analysis. The verification phase
is a straightforward application of model checking where an abstract description of
the system’s behavior is checked against a set of invariants. In the evaluation stage
the simulation results from the probabilistic approach are contrasted to the outcome
of the deterministic approach. The aim of the analysis stage is to closely examine the
instances where the solutions yielded by the two implementations differ. We identify

Figure 2. A co-simulation framework for G&S improvement and verification.
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patterns among the inconsistent results that reveal the weaknesses of the probabilistic
solution. The framework works by executing two independent models, the G&S
model and the exhaustive search model. The first input component to the co-
simulation framework (Figure 2) is an abstract model of the G&S fast dynamic
casting heuristics, implemented in Promela (SPIN’s input language) and the
embedded C primitives it allows. The G&S abstract model is subsequently used to
verify the main invariants of the G&S heuristics and at the same time provide us
with a simulation testbed to examine the heuristics performance. The second
component of the framework is the exhaustive search model that simply looks into
all possible type ID assignments to discover the optimal solution for a given class
hierarchy. We employ SPIN’s search engine to perform the exhaustive search. In
Algorithm 1 we present the pseudocode of our co-simulation approach. The following
sections elaborate in more details on each of the stages of the framework. 

3.1 Formal Verification 

Every G&S implementation operates under the assumption that when a prime number
is reused, it is assigned to non-conflicting classes. In addition, the maximum type ID
must fit within the boundaries of a memory word. We check these invariants during
the program verification phase. Establishing the validity of the G&S invariants is
done by straightforward application of model-checking with SPIN. In SPIN the
critical system properties are expressed in the syntax of linear time logic. Based on
the G&S abstract specification, the model-checker performs a systematic exploration
of all possible states. In case of failure, SPIN provides a counterexample that
demonstrates a behavior that has led to an illegal state. In our model, the invariants
are expressed as a never claim [Holzmann 2003], and are checked just before and
after the execution of every statement. 

3.2 Evaluation 

SPIN has been previously employed to implement solutions of scheduling [Brinksma
and Mader 2000] and discrete optimization [Ruys 2003] problems. The problem we
face in the G&S heuristics is a combinatorial optimization problem [Nemhauser and
Wolsey 1988]. Given a finite set I, a collection F of subsets of I, and a real-valued
function w defined on I, a discrete optimization problem could be defined as the task
of finding a member S of F, such that: w(e) is as small (or as large) as possible.

Except for the simplest cases, a discrete optimization problem is difficult because
its design space is typically disjoint and nonconvex. Therefore, the optimization methods
applied to continuous optimization problems cannot be utilized in this case. In a small
discrete problem, it would be possible to exhaustively list all possible combinations.
As the number of parameters increase, the state explosion makes optimizations
difficult. The two general strategies for approaching a discrete optimization problem
can be classified as deterministic and probabilistic. What we do for the G&S exploration
in SPIN could be described as applying a deterministic approach for the evaluation
of a set of proposed probabilistic methods. The Branch and Bound method [Nemhauser
and Wolsey 1988] guarantees the discovery of the global optimum in the cases when
the problem is linear or convex and is the most frequently used discrete optimization
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method. It is based on the sequential analysis of the discrete tree of each parameter.

The branches that can be estimated to reach invalid or unfeasible solutions are

consequently eliminated. This simple optimization could also be applied in some

limited cases in the SPIN’s Fast Dynamic Casting exhaustive search. Let us explore

a class hierarchy with three classes A, B, and C, where B is derived from A, and C is

derived from both A and B. In this case, we have Sclasses={A, B, C}, P={2, 3, 5}, and

idleaf={idc}. The enumeration is given in Table I. We assume that the computation

starts at a state S0 where all three keys ka, kb, and kc are uninitialized. Then we assign

possible values from the set P to the key variables of the classes A, B, and C. The

enumeration shown above can be expressed as the computation shown on Figure 3.

The graph shows only the valid states of the computation. There are a number of

invalid states that are not shown on the graph. For example, according to the rules

defined in G&S, it is possible to reuse some of the prime numbers in P. Thus, we can

try and add an edge kb=2 in state S1, however the reuse of 2 in this case is invalid

since A and B are conflicting classes. 

The illustrated automation in Figure 3 provides a foundation for the construction

of a Promela model for the deterministic solution. Each possible prime number

assignment to a given class key is represented by a separate state transition in the

exhaustive search model. SPIN initiates the optimum search at state S0 and visits all

possible states. At each end state the value of the minimum of the set of leaves, in

this case represented only by idc, is computed and compared to the current minimum.

This approach is similar to the algorithm described by Ruys in [Ruys 2003] and

shown in Algorithm 2. For such an application, we use the model checker in a

somewhat unusual fashion. In this scenario, the validation property checks whether

the value of idc is greater than the current minimum. Each time this condition is

Table I. Enumeration of all solutions.

idc = kc × kb × (ka)2 ka kb kc 

60 2 3 5 

60 2 5 3 

90 3 2 5 

90 3 5 2 

150 5 2 3 

150 5 3 2 

Figure 3. Exhaustive search computation.
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violated, the current minimum is updated and the process is automatically repeated
until SPIN confirms that there are no routes violating the specification. Since the
solution is deterministic, it is guaranteed to discover the global optimum for type ID
assignment. The performance of the G&S heuristics is measured by running a
simulation of the G&S model that has been used earlier for verification. Now we are
left with only one important task (not automated at this stage), the comparison of
the results from the probabilistic and deterministic solutions. Once we identify a set
of inconsistent results, we try to find a pattern and refine the G&S heuristics. Then
the refined scheme is implemented in the probabilistic model and the evaluation
process is reiterated. 

3.3 Analysis 

The simulation and enumeration models are continuously executed until, if possible,
a set of instances with inconsistent solutions can be identified. Thus, each instance in
the Set of Inconsistent Solutions (SIS), represents a given class hierarchy for which
the deterministic and probabilistic approach has discovered different solutions. The
class hierarchies for each test could be guided or created in a random fashion. For the
generation of the test data in our experiments we implemented a pseudo random
class hierarchy generation algorithm, in a manner similar to the TGFF (Task-Graphs-
For-Free) method as described in [Dick et al. 1998]. We look for patterns among the
collected hierarchies in SIS and seek clues that can lead us to improvements of the
G&S scheme. Potential improvements are tested by adding them to the G&S model
and evaluating their effect. Such scheme modifications are carefully selected since it
is possible that they might enhance a given G&S feature and at the same time
weaken another. Ideally, the improvements lead to a heuristic scheme that provides
the best solutions for a larger number of the test hierarchies and at the same time has
a time complexity equal to or less than the earlier heuristic scheme. 

With the numerous advanced state space reduction techniques utilized by the
SPIN model checker, little can be done to further optimize the exhaustive search.
Class hierarchies of double or triple the size of the ones presented in the paper can
possibly be facilitated with increased computational power and the parallelization of
our approach. In the current framework, the exhaustive search is used to identify
flaws in the G&S type ID assignment scheme. The goal of our experiments is to reach
quick and effective optimization of the G&S scheme, and we have been able to
achieve it with the current size of our models. A promising direction for our future
research is to devise a parallelization scheme for our methodology, so that we can
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perform simulations on a larger scale. 

4. APPLICATION IN MISSION-CRITICAL SOFTWARE

Modern space mission systems have evolved from simple embedded devices into
complex computing platforms with high autonomy and an exceptionally large demand
for human-computer interaction. Consequently, such systems require reliable and
flexible data systems managing the collection, storage, and transportation of data.
The Mission Data System (MDS) is the Jet Propulsion Laboratory’s state-and goal-
oriented framework for building embedded control systems with a high degree of
autonomy. MDS provides the building blocks for the implementation of embedded
platforms based on the concepts of state estimation and control. The Data Management
Services (DMS) is the MDS component responsible for the production, storage,
processing, and transfer of control and scientific data. In [Wagner 2005] Wagner
defines the challenges of data management in MDS as the problems of producing and
storing data and converting the data to various formats as needed by its consumers.
In addition, DMS needs to ensure the secure and lossless transport of the data with
limited resources and through unreliable physical medium. To design and relate the
data system entities, DMS employs concepts from high-level ISO C++ including
templates, object-oriented class encapsulation, and dynamic casting necessary for
the conversion of the data formats. 

The actual telemetry data objects in MDS communicate with each other via byte
streams produced by the transport protocol (e.g. spacecraft to ground communication).
The receiver of the telemetry data needs to recreate the data object from the byte
stream and thus invoke type casting in numerous occasions. Constant-time dynamic
cast is also needed by the MDS Goal Network in the case when a controller or
estimator [Wagner 2005] passes a goal via the Coordinating Goal Network(CGN),
typically a large dynamic data structure. In CGN the goal is propagated using only
its abstract attributes (start and end time, and the associated state variable). The
achiever object who eventually picks up the goal needs to reconstruct the data object
via dynamic downcasting to the specific type that conveys the state-specific achieve-
ment criteria. The application of the common compiler implementation of dynamic
cast has proved to be unacceptable due to poor performance and the lack of the
timing guarantees. 

The G&S scheme was devised as a solution to a real industrial problem related to
C++ use for hard real time code. Inquiries in the C++ community revealed that the
problem was fundamental and common, rather than isolated: developers simulate
dynamic casting with other language features, leading to type-unsafe special-purpose
code or the avoidance of best object-oriented practices. Naturally, such workaround
code slows down development, complicates maintenance, and increases the need for
testing. 

5. RESULTS

We applied the co-simulation process described in the previous section to a large
number of class hierarchies. The tested hierarchies are not built into our models.
Instead, we have applied a methodology reminiscent to TGFF [Dick et al. 1998] to
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automatically generate hundreds of possible test cases. For illustration, we show the
results from a set of seven pseudo random class hierarchies (Appendix A). The
results of the G&S heuristics model and the exhaustive search are shown in Table II.
A brief comparison of the results indicates that the G&S heuristics do not give
optimal performance for class hierarchies with non-virtual multiple-inheritance. A
closer look at the algorithm reveals that the priority calculation routine takes into
account only the number of descendants that each class has. Let us consider the class
hierarchy from test case 7. We notice that according to the current scheme, the base
classes 0, 1, and 2 all get the same priority rank since they all share the descendant 6.
Class 6 is at the lowest level of the hierarchy and has the largest number of ancestors.
If we would like to optimize the heuristics, we must find a way to increase the
priority of base class 2. Our reasoning is derived from the fact that Class 2 is
ambiguous and the leaf Class 6 contains two copies of it. Similarly, let us have a
closer look at test case 1. In the optimal solution, Class 5 takes the lower prime
number (11) compared to Class 4, despite the fact that its only descendant has less
ancestors compared to Class 4. The reason for this result is the fact that the derived
Class 3 contains two ambiguous bases while Class 4 contains only one ambiguous
base. As a result of our analysis we conclude that higher priority should be given to
derived classes and their ancestors who contain more ambiguous base classes. To fix
these weaknesses, we extend the G&S heuristics by adding two simple rules: 

(1) We count every ambiguous ancestor twice when we determine the number of
ancestors to each class 

(2) For each base class, we count the number of derived classes that include more
than one copy of it, and add that number directly to its priority 

We call this enhanced G&S heuristics Fast Dynamic Casting Plus (FDC+). As Table

Table II. Co-simulation of the seven cases from Appendix A.

Case No G&S Exhaustive search FDC+ 

Case 1 (keys) (2, 3, 5, 7, 11, 13, 17) (3, 2, 5, 7, 13, 11, 17) (3, 2, 5, 7, 13, 11, 17) 

Case 1(ids of all leaves) (16380, 16830) (13860, 13260) (13860, 13260) 

Case 2 (keys) (2, 13, 3, 5, 17, 7, 11) (2, 13, 3, 5, 17, 7, 11) (2, 13, 3, 5, 17, 7, 11) 

Case 2 (ids of all leaves) (1326, 2310) (1326, 2310) (1326, 2310) 

Case 3 (keys) (2, 3, 13, 5, 7, 17, 11) (2, 3, 13, 5, 7, 17, 11) (2, 3, 13, 5, 7, 17, 11) 

Case 3 (ids of all leaves) (26, 51, 2310) (26, 51, 2310) (26, 51, 2310) 

Case 4 (keys) (2, 3, 5, 7, 11, 13, 17) (2, 3, 5, 7, 11, 13, 17) (2, 3, 5, 7, 11, 13, 17) 

Case 4 (ids of all leaves) (2310, 1547) (2310, 1547) (2310, 1547) 

Case 5 (keys) (2, 3, 5, 7, 11, 7, 11) (2, 3, 5, 7, 11, 7, 11) ( 2, 3, 5, 7, 11, 7, 11) 

Case 5 (ids of all leaves) (42, 66, 70, 110) (42, 66, 70, 110) (42, 66, 70, 110) 

Case 6 (keys) (2, 3, 5, 11, 13, 7, 17) (2, 3, 5, 11, 13, 7, 17) (2, 3, 5, 11, 13, 7, 17) 

Case 6 (ids of all leaves) (66, 78, 420, 170) (66, 78, 420, 170) (66, 78, 420, 170) 

Case 7 (keys) (2, 3, 5, 7, 11, 13, 17) (3, 5, 2, 7, 11, 13, 17) (3, 5, 2, 7, 11, 13, 17) 

Case 7 (ids of all leaves) (2552550) (1021020) (1021020) 
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II shows, for the initial set of test cases, FDC+ performance is 100% equivalent to the
performance of the deterministic approach. In the performed tests, we have generated
127 pseudo random class hierarchies and applied G&S, FDC+, and the exhaustive
search to each one of them. The experimental results showed that FDC+ was able to
yield the best type ID assignment in 85% of the class hierarchies compared to 48%
for the G&S heuristics. The time performance of the three schemes is shown in
Figure 4. While the time performances of the G&S and FDC+ algorithms are equal
and both run in a very low constant-time (the function at 00:01 min on Figure 4),
logically the time performance of the exhaustive search increases exponentially with
the increase of the number of classes nodes in a given class hierarchy. The analysis of
the test results indicated that FDC+ finds a better type ID compared to the G&S
approach in 39% of the test scenarios. For the greater part of the test cases, FDC+
matched the optimal type ID assignment computed by the exhaustive search. This
efficiency boost is due to the optimized performance of FDC+ in the cases where
multiple non-virtual inheritance is present in the class hierarchy. We have also
observed that the implementation of these optimizations does not lead to efficiency
loss in other scenarios and the performance of FDC+ is always at least as good as the
performance of G&S. Our experimental results have indicated that the introduced
optimizations in FDC+ have fixed a weakness of the original G&S approach and
have improved the success rate in finding the best type ID assignment. The G&S
scheme requires a key of a memory size that is a function of the size and shape of a
class hierarchy. Thus, the improved heuristics almost double the size of class hierarchies
that can be handled by a given key size. Since the scheme gets significantly slower
when a key gets too large for a machine word, the improvements to the heuristics
address the main limitation of the G&S scheme. 

6. BASIC QUERY: EXTRACTING SEMANTIC INFORMATION FROM

CODE

The heavy computational overhead of the model-checking tools as well as the problem

 Figure 4. Search time for type ID assignment.
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of state space explosion limits the applicability of our SPIN models to the process of
system simulation and analysis. For its use in practice, the FDC+ scheme needs to
provide a compile time guarantee for each program that all of its type IDs fit within
the allowed bounds of a memory word. To achieve a practical and verifiable fast
dynamic casting operation we enhanced our implementation with a static analysis
module that checks the type ID assignment’s validity. 

In the remaining part of this section we describe the design and implementation of
Basic Query (BQ), an innovative library for extracting semantic information from
C++ source code. BQ user-defined actions are executed by traversing a compact
high-level abstract syntax tree (AST) called Internal Program Representation (IPR).
IPR is at the center of a C++ static analysis framework named The Pivot [Stroustrup
and Reis 2005]. We take advantage of BQ’s simplicity and efficiency in formulating
and combining static analysis queries to construct a set of graphs representing all
class hierarchies in a C++ program. Having the class graphs at compile time allows
FDC+ to guarantee, prior to the program’s execution, that all assigned type IDs fit
within the required bounds of a 64-bit memory word. 

The Pivot is a compiler-independent platform for static analysis and semantics-
based transformation of the complete ISO C++ programming language and some
advanced language features proposed for the next generation C++, C++0x [Becker
2006]. The Pivot represents C++ programs in two distinct formats (Figure 5): 

(1) Internal Program Representation (IPR). IPR is a high level, compact, fully typed
abstract syntax tree that can represent complete ISO C++ programs as well as
incomplete program fragments and individual translation units 

(2) eXternal Program Representation (XPR). XPR is a persistent and human
readable format for program representation. XPR uses a prefix notation and is
quick to parse (a single token look ahead and no symbol table needed) 

Fundamental to our BQ library is the design of a fast and flexible methodology for

Figure 5. An XPR and IPR representations of a C++ template class definition.
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traversing the IPR, The Pivot’s AST. We define a depth-first search (DFS) visitor
class, called the IPR Xplorer Visitor Class, that performs the AST search following
the order of the ISO C++ grammar definition [Stroustrup 2000]. The Xplorer allows
the programmer to statically define a set of actions to be executed during the DFS
traversal including a terminating condition as well as actions upon the encounter of
specific IPR nodes (C++ expressions, declarations, and statements) and AST edges
(interfaces of the IPR nodes). In such a way, the cost of a user-defined action could
be less than a single traversal of the abstract syntax tree. The functionalities and
user interfaces of the Xplorer visitor are reminiscent to the syntax and operation of
the Boost’s DFS Visitor [Abrahams and Gurtovoy 2004]. When an action is
specified, the programmer instantiates each of these classes with two compile-time
arguments, a TP (trigger point), identifying the exact point of triggering the action,
and a TN (target node), specifying the type of IPR nodes which are the traversal’s
target. The following examples illustrate the usage of the Xplorer visitor: xplore_
expr_node <discover, ipr ::Call>, we specify an action at the point of discovery of
each ipr::Call node, and xplore_stmt_node <body, ipr ::Switch>, a user-defined action
is executed prior to exploring the edge body of an IPR node of type ipr::Switch. 

In some scenarios it is preferred to have linear access to the nodes of a program
unit and at the same time manipulate the AST through an intuitive and familiar
user interface. Our Xplorer Visitor defines the classes: I P R_Visitor and I P R_

Iterator. Their design closely follows the functionality and philosophy of the visitor
design pattern [Abrahams and Gurtovoy 2004] and the C++ STL Iterator [Stroustrup
2000] classes, providing a convenient way to search, manipulate, or modify a set of
IPR objects. The convenience of this method comes at a certain price: the DFS
traversal needs to collect and store in advance all of the nodes from a program unit,
thus the cost of the user-specified actions is at least a single traversal of the AST. 

BQ user-defined actions are constructed at compile time by using the mechanism
of expression templates. An expression template is a programming technique that
relies on the compiler’s evaluation of template arguments in order to pass C++

expressions as inlined function arguments. This approach has been successfully
applied in a number of Boost Libraries [Abrahams and Gurtovoy 2004] to deliver
efficient and modern C++ designs that avoid the use of costly C-style pointers to
callback functions. In the case of BQ queries, we employ expression templates to
evaluate at compile-time a combination of user-specified parameters and pass the
user’s request for run-time execution as an inlined function argument. Thus, by
eliminating the necessity to resort to an object-oriented design utilizing pointers to
class member function to specify user intent, we gain performance and flexibility.
Expression templates are not used in the construction of the entire pattern tree
because of the heavy syntax and the reduced expressiveness that such an approach
would impose. Instead, the ‘glue’ between all statically computed BQ elements is
encoded in the BQ operations (Table III). The clean and flexible syntax of the BQ
user-defined actions is achieved through the exploitation of the C++ compiler’s
ability to perform complex template argument inference. 

A BQ action (also a BQ pattern) consists of three components: a Recursive Query

Object (RQO) containing the root of the traversal as well as the result from an
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applied pattern or a sequence of patterns, a set of BQ elements, and a set of BQ

operations. At each step of the AST traversal, the RQO decides whether the target is
reachable from the current point and carry on with the execution of the pattern or
terminate the search. A BQ pattern is expressed through a combination of a number
of BQ elements and BQ operations applied to the recursive query object. There are a
number of possible applications of the BQ operations on the BQ elements (Table
IV). A BQ element specifies one or several edges in the pattern tree. A BQ element
could be one of three possible types: 

(1) Exe_member <x, e>. (EM) generates a straightforward edge e from an IPR node
x. For example, if the vertex x is an IPR node of type ipr ::Type_decl and the
edge e is ipr ::initializer, the result of the operation is the IPR node yielded by the
execution of the IPR interface x−> initializer (that is the initializer of a C++ type
declaration). 

(2) Exe_condition <x, e, c>. (EC) generates an edge e from an IPR node x, only if a
specified boolean condition c is met 

(3) Exe_iprseq <x, e
n
>. (ES) produces a sequence of edges e

n
 resulting in a set of IPR

nodes. An example of such an edge in the pattern tree is the call to retrieve all
bases of a class declaration (x

 

− > bases( )). 

An important component of our class hierarchy extraction routine is the specification
of a user-defined action searching for all class declarations in a program that are
children of a certain base class. To do that we specify a BQ check that tests every
pair of classes for a parent-child relationship. As an example of a BQ routine, we

Table III. BQ operations.

Operation Operand Description 

Apply < execute an action specified by a BQ element 

Apply and Evaluate ∧
executes a BQ element and returns the result (a bool, an IPR 
node or a set of nodes) 

Evaluate − > returns the result from the application of a BQ pattern 

Table IV. Application of the BQ operations.

Operation Result Operation Description Result Description 

RCO < ES 
Set of IP R 
Nodes 

applies an ES 
sequence of IPR nodes (such as a 
list of base classes) 

RCO < EM RCO 
executes an EM, stores the 
result in RQO 

a pointer to RQO 

RCO < EC RCO 
executes an EC, stores the 
result in RQO 

a pointer to RQO 

RCO ∧ EC bool 
executes an EC, stores the 
result in RQO 

the evaluation of EC’s condition 

(Set of IP R 
Nodes) ∧ EC 

bool 
searches for a match for 
EC’s condition 

true if at least one instance satisfies 
the predicate 
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present the definition of the function object Is_derived_from (Algorithms 3 and 4),
that tests a pair of class nodes for a parent-child relationship. In this section we
presented the design and application of the static analysis tools that help us deliver a
practical and verifiable fast dynamic cast implementation. The remaining algorithms
from our class graph construction routine (that we do not show in this paper) are a
technical detail of simply applying the discussed techniques. 

7. CONCLUSION

In this work we applied co-simulation of the deterministic and probabilistic solutions
to the combinatorial optimization problem posed by the G&S type ID assignment
scheme. Our framework proved successful in verifying and refining the existing G&S
heuristics. We demonstrated how we use the simulation results to devise improvements
to the G&S algorithm and evaluate them. The results from our experiments indicate
that the improved G&S heuristics (FDC+) provide the optimal type ID assignment
in 85% of the class hierarchies, compared to 48% for the regular G&S algorithm. The
efficiency of the type ID assignment scheme has significant importance for the
performance of the fast dynamic casting by Gibbs and Stroustrup [Gibbs and Stroustrup
2006]. This paper presented a practical approach of how to discover improvements
to the type ID assignment scheme in a simple and effective manner. The main
advantage of the presented approach is the ease and simplicity of the discovery and
test for potential improvements. The improved heuristics that we have described in
this work almost doubles the size of class hierarchies that can be handled by a given
key size. A more extensive simulation might suggest further improvements to the
type ID assignment scheme. Our main goal in this work has been to demonstrated
how an algorithm optimization problem encountered has been successfully automated
and moreover that its automation has led us to quick but significant improvements
of the initial scheme. In addition, we introduced the design and application of Basic
Query, an innovative expression-template based library for extracting semantic
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information from C++ source code. We demonstrated how to apply Basic Query to

achieve a practical and verifiable implementation of the FDC+ scheme. 
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