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We propose ID-exchange protocol for Connectionless Location-Awareness Service (CLAS) to
locate mobile nodes in indoor sensor network. When adapting location-awareness service to
sensor network, the target system must be designed in accordance with various metrics which
reflect the system requirement. We especially consider sustainability of the existing service
which has been provided for its original purpose, such as environmental monitoring. The
detailed meaning of sustainability here is that, even if location-awareness service is newly
added to the existing service, the system must be assured to retain a stable network condition,
and to deal with newly caused traffic properly. The CLAS ID-exchange protocol is especially
designed for fixture and mobile nodes communication to achieve these properties. The protocol
operates on 802.15.4 MAC layer to make mobile node work independently of the procedure to
build routing table of fixture node, so a stable routing condition can be achieved even if there
are many mobile nodes. Moreover, the dedicated frequency channel is assigned only for this
protocol, so that traffic caused by location-awareness service can be distributed to another
channel. A real system adapting the protocol was implemented to monitor fire and authorities’
positions. We verified the overhead and elapsed time for location-awareness. The result shows
the proposed protocol has a high performance in detecting speed, traffic distribution, and
stability of overall network.
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General Terms: Sensor Network, IEEE 802.15.4 MAC, ID-Exchange Protocol, Mobile and
Fixture Node
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1. INTRODUCTION

Location-awareness services provide people with specialized functions according to
their physical positions. Basically, the service-user using mobile devices, like PDAs
and cell-phones, communicates with a variety of positioning systems to locate their
whereabouts. Advanced services, such as location tracking service, can be provided
by exchanging data with the server bidirectionally. Especially, sensor network,
which monitors environmental conditions in widely spread areas, is an emerging
technology for location-awareness services. Each sensor node, called a fixture node, is
installed at known position, and is connected to adjacent nodes to reach the remote
server. This makes sensor network play an adequate role as an infrastructure to
provide advanced location specific information as well as environmental data.

Generic communication stack for sensor network involves two core layers; Network-
layer and MAC-layer. ZigBee, 6LoWPAN are widely used network-layer standards
supporting mesh-network topology and multi-hop routing. These are the expansion
of IEEE 802.15.4 MAC standards which defines single-hop wireless communication
with low-power consumption. The simplest approach to adapt location-awareness
service is to make mobile-fixture node communication use the same scheme with
fixture-fixture node’s one. Considering this scheme is defined in network-layer,
routing path to the mobile node can be naturally achieved according to the routing
procedure. This facilitates to deliver data to the remote server for bidirectional
location-awareness service. In spite of assistances of the network-layer, the method
has two drawbacks when it is adapted to location-awareness service. Firstly, mobile
nodes, which move fast, try to update routing information of fixture nodes
frequently. When the process, called the handover, fails to modify the information,
routing paths can be duplicated or missing. Secondly, while initiating and closing
sessions between mobile and fixture nodes, the procedure causes massive traffic which
could interrupt the existing service. The existing service (basic service) means a
service which has been provided for its original purpose, such as environmental
monitoring. These situations lead to unstable network conditions, which make the
system fail to provide basic services as well as location-awareness services conforming
to end-user expectations. Therefore, another approach for fixture and mobile node
communication is needed to assure a stable network condition.

Hence, we propose ID-exchange protocol for Connectionless Location-Awareness
Services (CLAS). By placing this additional protocol on 802.15.4 MAC-layer, the
session between fixture and mobile nodes is separated from the network-layer
protocol. Adapting the separated layering strategy of location-awareness service, we
can avoid the routing problems caused by mobile node’s handover. Moreover, the
strategy makes location-awareness service and basic service operate independently,
so that traffic can be distributed into two distinctive frequency channels. We
implemented a demo application to show high stability and high detecting speed of
the proposed protocol.

This paper is organized as follows. Section 2 briefly surveys related work in
consideration of location-awareness services of sensor network. Section 3 describes
the CLAS network topology, and Section 4 explains ID-exchange protocol based on
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the topology. In Section 5, we explain the implementation and software design of the
demo system. Experimental evaluation is discussed in Section 6. Section 7 summarizes
the main contribution of the paper and suggests the future work.

2. RELATED WORK

GPS and RFID-based solutions are the best-known examples to locate mobile nodes
in sensor network. Although GPS-based solutions measure devices’ positions with a
high accuracy in most places in the earth, they are difficult to locate callers inside
buildings, in cars, under dense foliage or any other place without direct line-of-sight
to GPS satellites [Poizer and Todd 1999; Wark et al. 2007]. RFID-based solution
detects mobile nodes, to which RFID-tag is attached, in every place with high speed
and high stability by communicating with RFID-reader. Even though the mobile
device reduces its cost dramatically, it is difficult to provide two-way communication
with fixture node. Moreover, both GPS and RFID-based solutions require the fixture
node to change overly its hardware [Zhang and Wang 2006]. When GPS-transceiver
and RFID-reader are combined with fixture node to communicate with the server,
H/W and S/W interfacing between two distinctive systems is unavoidable which
diminishes sustainability of the existing infrastructure. RF triangulation-based
solutions, whereas, can be used inside building sharing physical and MAC-layer, so
that it needs less changes to the existing system than other technologies. However, RF
signal strengths have a tendency to be distorted by nearby obstacles making the
system difficult to locate indoor-nodes with high precision [Arias et al. 2004; Amodt
2006; Bahl and Padmanabhan 2000].

Therefore, a simpler way is commonly used to locate mobile nodes for indoor
sensor network system. Target environment is divided into a number of areas, and a
geographical sense is entitled for each of them. Each area, called cell which is a basic
unit of positioning, is where a fixture node provides location-awareness services to
adjacent mobile nodes. For bidirectional services, it is essential for fixture node to
use routing function to report mobile nodes’ positions to the server, or to direct data,
which is received from the server, to mobile nodes. ID-exchange procedure, in which
fixture and mobile nodes identifies each other, is the basis to establish the routing
table. The procedure defined on the network-layer, called JOIN, assists to build
parent-child relationship, helping parent-side (fixture node) to maintain routing table
which specifies the route to the child-side (mobile node). JOIN procedure is useful
not only to locate mobile nodes in a cell, but also to set up a route from the server to
the mobile node. Moreover, software developers can implement services on the top of
the network-layer without detailed knowledge about underlying network topologies
and routing algorithms. This method is called Cell-Based Connection-Oriented
Location Awareness Services (COLAS) in this paper. Especially, the mobile node which
operates on the network layer is called Network Layer Level Mobile Node (NL-
Mobile Node).

However, COLAS brings routing-related problems. Sensor network takes advantage
of ad-hoc routing algorithms which connect or disconnect sessions of two adjacent
nodes dynamically [Akkaya and Younis 2005]. Yet, most algorithms are designed on
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the basis of the assumption that every node is stationary. When mobile nodes move
around, routing tables of fixture nodes continuously have to be updated to retain the
latest paths. If the information is not removed or added from previous and new
connections as expected, paths can be duplicated or missing, which results in failure
of both basic and location-awareness services [Sun et al. 2007]. Moreover, the
concept of COLAS makes basic and location-awareness services tightly-coupled at
the network layer by sharing the same frequency channel as well as routing tables.
This channel usage makes both types of services use the low data rate supported by
IEEE 802.15.4 MAC ineffectively. Such data rates are tolerable for basic services
which send data periodically with a long interval. In contrast, location-awareness
services treat event-driven data which is difficult to predict its traffic at a certain
time. Consequently, the heavy traffic by the event-driven data may disrupt basic
services instantly [Lee 2006].

In this paper, we consider Connectionless Location-Awareness Services (CLAS) to
solve the problems of COLAS. CLAS places two types of services on different
communication layers to make them loosely-coupled; the network-layer for basic
services and the MAC-layer for location-awareness services. The mobile node of
CLAS, called MAC Layer Level Mobile Node (MIL-Mobile Node), interacts with a
fixture node on the MAC layer, so that routing table of fixture nodes remains
unchanged. In addition, the loosely-coupled service feature in CLAS makes it possible
to separate the frequency channel used for location-awareness services from basic
service’s one. The separated channel, called Dedicated Location-Awareness Service
Channel (DLAS), helps the system to spread traffic over two distinctive channels. In
Section 3, we explain the network topology for CLAS.

3. NETWORK TOPOLOGY FOR CONNECTIONLESS LOCATION-
AWARENESS SERVICE

When designing the network topology for CLAS, the sustainability of the existing
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Figure 1. Network Topology for CLAS.
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sensor network system must be considered primarily. We assume the existing system
has been providing basic service, such as environmental monitoring. Even though
location-awareness service is newly added to the existing system, basic service must
operate with no degrade of its performance. Figure 1 shows the topology which uses
two different communication layers for each service; network-layer for basic service
and MAC-layer for location-awareness service. ML-mobile nodes interact with a
fixture node in each cell only using MAC-layer. This is possible because we assume
that any devices in a cell are in a single-hop RF range, which means the network-
layer supporting multi-hop routing is unnecessary. Even so, the information of ML-
mobile nodes has to be delivered to the server which is out of the single-hop range to
provide advanced location-awareness services. In this case, the information can be
forwarded by routing function used by basic service. In short, fixture node retrieves
information of mobile nodes in a local cell using MAC-layer, and collected information
is forwarded to the server using Network-layer.

The two steps of information processing may look like overhead. However, it is
required for basic and location-awareness services to be loosely-coupled. This is very
essential to assure sustainability for the basic service. Because most problems of
COLAS stated in Section 2 were caused by operating two different types of services
on the same network-layer. Thus, by loosely coupling two types of services over two
different communication layers, dramatic advantages can be achieved. When
communicating with NL-mobile node in COLAS, fixture node had to retain the
information of the mobile nodes to maintain routing table. Retaining mobile nodes
information may seem to be attractive, in that the route from the server to the
mobile node is automatically established facilitating to provide bidirectional location-
awareness service. However, considering limited storage of embedded system, the
fixture node may not be able to hold information for many mobile nodes. The more
serious problem is that routing table may have wrong information because of frequent
handover of mobile nodes. In contrast to COLAS, fixture node of CLAS has no
responsibility to retain information of mobile nodes for a long time since the
information isn’t involved to establish routing table. The information can be stored
in fixture node for a short time, then forwarded to the server, and finally discarded
from the storage of fixture node according to the application-layer demand. Since
mobile node’s information doesn’t affect the existing routing table which has been
used by basic service, both services can be provided together in a stable routing
condition.

The loosely-coupled feature also gives the system flexibility of using the frequency
channel. IEEE 802.15.4 MAC supports sixteen channels in 2.4 GHz frequency band,
and each channel has 250 kbps data rates which are relatively much lower than other
protocols, such as Bluetooth, or WLAN [Memsen 2004]. In COLAS, two types of
services had to share a common frequency channel, called Sensor Network Backbone
channel (SNB channel). This is because that as long as both mobile and fixture nodes
operate on the same network-layer, they must agree on using the same static channel.
That means, even if there is another unused one out of sixteen channels, both fixture
and mobile nodes using COLAS have no choice to use it other than currently used
channel. The limited channel usage of COLAS causes that two types of traffic,
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Figure 2. The channel usage for basic service and location-awareness service.

generated by basic and location-awareness service, are concentrated on a single
frequency channel. At a certain time, a large traffic caused by location-awareness
services may interrupt basic service which uses the same frequency channel, degrading
the sustainability of the basic service. On the contrary, in CLAS, each service is
allowed to use a physically independent frequency channel, since both services operate
on different layers. Therefore, it is possible that the traffic caused by location-
awareness service can be shifted to another channel (DLAS channel). Moreover, that
makes ML-mobile node communicate with fixture node anywhere through the same
frequency channel, so that no handover is required even if it moves other Personal
Area Network (PAN) using different SNB channel. Figure 2 shows the channel usage
adapted in CLAS. For example, even if PAN 2 uses channel 20 (SNB Channel) for
basic service, location-awareness service is always provided through channel 26
(DLAS Channel). Moreover, when MT-mobile nodes move to another PAN which
uses a different SNB Channel, it is unnecessary to change to the new channel [Jeong et
al. 2006].

The proposed network topology of CLLAS gives far more advantages than COLAS.
However, it requires system to adapt another ID-exchange protocol on the MAC-
layer for interacting between fixture and mobile nodes. The details of the protocol
will be discussed in the following section.

4. ID-EXCHANGE PROTOCOL FOR CONNECTIONLESS LOCATION-
AWARENESS SERVICE

4.1 Protocol Description

In Section 3, CLAS required two steps to send ML-mobile nodes’ IDs, single-hop ID-
exchange in a local cell and multi-hop routing to the remote server. The latter step is
a typical procedure to deliver message to distant places in sensor network. Yet, the
former step is newly added in CLAS under the constraint of which ID-exchange
happens on the MAC-layer. In this section, we explain ID-exchange protocol which
was used in the first step.

CLAS ID-exchange protocol provides ML-mobile node and fixture node with
different kind of information. ML-mobile node identifies its location by receiving ID
of the neighboring fixture node. Fixture node recognizes the ML-mobile node inside
the cell by obtaining its ID. Figure 3 describes the procedure of CLAS ID-exchange

Journal of Computing Science and Engineering, Vol. 2, No. 4, December 2008



418 Baek-Gyu Kim and Soon-Ju Kang

802.15.4 MAC Communication

Mobile Node Fixture Node

ﬂ : Movement Detect()

[Mobile Node] _
2 *[n] : ID Request()
3 :ID Response()
Hf 4 Ack()
5 : Send Location Info. to Server()

[No Mobile Node]
LF 6 *[n] : ID Request()

7 : Time Out()

8 : Send Intruder Alarm to Server()

Figure 3. ID-Exchange Protocol based on CLAS.

protocol. The beginning of the protocol is to broadcast ID-request packet from either
MIL-mobile or fixture node, since both sides have no information of their counterparts.
In this protocol, fixture node firstly sends its ID to ML-mobile nodes (1, 2). ID-
request can be broadcasted only one time. Yet, when a large number of ML-mobile
nodes exist in a cell, they reply back with ID-response packets at the same time
causing extensive traffic instantaneously. A portion of packets can be missing lowering
recognition rate of MIL-mobile nodes. The higher recognition rate can be achieved by
broadcasting ID-request more than one time. Followed by ID-request, MI-mobile
nodes acknowledge with ID-response packet containing their IDs (3). The destination
of ID-response must be the fixture node’s address which initiated the procedure so
that only the right fixture node receives the responses. Finally, the fixture node
which received ID-response sends ACK packet to ML-mobile nodes indicating that
ID-exchange has finished successfully (4). This ACK procedure will be discussed in
detail in the following subsection. The fixture node which collected IDs of ML-mobile
nodes forwards them to the server through multi-hop routing (5). Back to the first
step, even if a fixture node broadcast its ID (6), if there is no mobile node listening to
it, the procedure ends with an exception which can be handled by higher level

Table I. Information received after ID-Exchange Protocol.

Mobile Node Fixture Node Server
Info. Fixture Node 1D Mobile Node IDs Fixture Node 1D,
Mobile Node 1Ds
Protocol 802.15.4 MAC 802.15.4 MAC, Network,
Used Network Internet
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applications (7, 8).

Table I summarizes acquired information and used communication layers of each
system components.

We found that when a number of mobile nodes replied with ID-response packet to
fixture node, fixture node failed to send ACK packet to every mobile node because of
the limited data rate. In following subsection, we suggest a novel ACK mechanism to
support the proposed ID-exchange protocol.

4.2 Delayed Acknowledgement Mechanism for N-to-1 ACK Procedure

Under the low data rate of sensor network, the fixture node broadcast ID-request
packets more than one time to detect multiple mobile nodes at a single cycle of ID-
exchange protocol. That means, if many mobile nodes respond with ID-response to
the first ID-request, some portion of mobile nodes may fail to transmit the response
successfully, because the simultaneous access of mobile nodes to the medium cause
large traffic. Considering these mobile nodes, multiple ID-requests in a single cycle of
ID-exchange protocol make it possible to achieve higher recognition rate. The fixture
node sends ACK packet back to the mobile nodes not only to assure the successful
arrival of ID-response, but also make mobile nodes send only one response for the
multiple ID-requests, so that unnecessary responses can be reduced.

In general, every packet needs to receive ACK packet from its destination to check
its arrival. This is called N-to-N ACK mechanism in this paper. Although N-to-N
ACK mechanism is the simplest way to assure the reliability of communication
protocols, it is difficult to adapt in CLAS ID-exchange protocol. If many mobile
nodes exist in a cell, the fixture node has to send multiple ACKs in response to the
every ID-response packet in a short time. In our experiment, the loss rate of ACK
packets was considerable when N-to-N ACK mechanism was used under the limited
data rate (250 kbps). The loss results in, even if most ID-response packets were
successfully delivered to the fixture node, a portion of mobile nodes which couldn’t
get ACK guesses that the ID-exchange was failed. This situation leads these mobile
nodes to respond to the subsequent ID-request with the same ID-response packet
occupying the limited bandwidth unnecessarily.

We adapt the Delayed Acknowledgement (DA) mechanism of Transmission
Control Protocol (TCP) to solve this problem [Allman 1999]. DA of TCP delays
ACK for a short time when receiving a packet. After the waiting timeout, TCP
checks another data which is to be directed to the same destination where the
previous ACK has to be sent, and delivers the data with ACK packet to the
destination together. The DA proposed in this paper has the same concept with
TCP’s DA in that both use the communication medium efficiently. Yet, there is a
difference in that DA in this paper is adapted to implement the N-to-1 ACK
mechanism. In N-to-1 ACK mechanism, when the fixture node receives ID-response
from mobile nodes, ACK procedure is delayed for a short time. Afterwards, only a
single ACK packet is broadcasted to the nearby mobile nodes, rather than sending
multiple ACK packets for each ID-response. The ACK packet contains a couple of
source addresses of mobile nodes extracted from the received ID-response packets, so
that each mobile node confirms that the ACK packet is directed to it. By reducing
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Figure 4. Delayed ACK in CLAS ID-Exchange Protocol.

the number of ACK packets, the N-to-1 ACK mechanism uses the limited
communication bandwidth effectively. Figure 4 shows the N-to-1 ACK mechanism
using DA. We assume a single ID-exchange protocol repeats ID-request three times.
In the first ID-request, three of eight mobile nodes successfully send ID-response to
the fixture node. Then, the fixture node waits for a moment, and sends a single ACK
packet to the three mobile nodes (M1, M2, M3). The remaining mobile nodes (M4-
MS8) retry ID-response for the following ID-request with the same mechanism. When
compared to N-To-N ACK mechanism which sends eight ACKs (or more in case of
collision) to the eight mobile nodes, N-To-1 ACK sends only three ACK packets
preventing unnecessary retransmission of ID-response. As a result, this mechanism
reduces the loss rate of ACK using the low data rate efficiently.

A demo system adapting the ID-exchange protocol and N-to-1 ACK mechanism
will be introduced with its software design in the next section.

5. SOFTWARE DESIGN AND IMPLEMENTATION
5.1 Software Design

Fixture Node

> ;
- CLAS Maklle Node
Manager PR
¢ > obile Node
App Task
802154 MAC G 802.15.4 MAC
Physical layer — Physical layer

Figure 5. Communication stack between fixture and mobile nodes.
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Fixture Node Mobile Node

Figure 6. Fixture node and mobile node adapting CLAS ID-exchange protocol.

We applied CLAS ID-exchange protocol to the demo system which monitors fire and
authorities’ locations. Figure 5 shows the software stack for the fixture and ML-
mobile nodes consisting of the system. The fixture node’s stack is designed to use the
network and MAC layer selectively. Two application tasks, Basic and CLAS manager
tasks, are loaded on each layer. The basic task sends environmental data periodically
to monitor fire. The CLAS manager task exchanges location information with ML-
mobile nodes using ID-exchange protocol. Two tasks use distinctive frequency
channels to spread the traffic, SNB and DLAS channel for each task. On the other
hand, the ML-mobile node software has one application task on the MAC layer,
Mobile Node App task. The task interacts with CLAS manager task of the fixture
node’s software on the same DLLAS channel.

5.2 Implementation

The fixture node used in the demo system has smoke, flame, temperature sensors to
detect fire. Movement detection was used to notice people or other moving objects.
8051-core based MCU works with CC2430 RF transceiver. For sensor network
software, Z-Stack of TI [Texas Instruments 2006] is ported on the hardware to use
ZigBee, which is the most popular sensor network protocol [Kinney 2003]. The

Target Environment Remote Monitoring

i e
EEl

) (0) o

‘Mobile Node =
A

Location-Awareness Service B2Sic Service

Figure 7. Experimental Setup.
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mobile node employs the same hardware features with the fixture node, bringing
together an accelerometer to sense movements, LCD and LED for user-interface.
Figure 6 shows the fixture and mobile node.

Five fixture nodes were installed on the ceiling in each room of the building.
Collected data are directed to the monitoring server through the gateway which
connects the sensor network to the Internet. The monitoring server provides end-
users with information of environmental conditions and authorities’ current positions.
The lefthand side of Figure 7 shows the demo environment, and the righthand shows
GUI program to facilitate presenting information of each room.

6. EXPERIMENTAL EVALUATION
6.1 Experimental Analysis

We examined the system from three perspectives, ID correction time, recognition
rate, and reporting time. The ID correction time is duration for completing a single-
cycle of ID-exchange protocol. The recognition rate means the number of detected
mobile nodes through a single-cycle of ID-exchange protocol. The reporting time is
duration from the moment of detecting mobile nodes in a cell to the arrival of their
IDs to the server, which is the sum of ID correcting time and multi-hop delivery
jitter.

A fixture node broadcasts ID-requests to ML-mobile nodes more than one time to
improve the recognition rate. Generally, an RF transceiver can use only one physical
frequency channel at a time. When implementing the consecutive ID-requests, a
router node should avoid taking the DLAS channel for a long time, because the
routing function using the SNB channel can be interrupted. Therefore, a novel
approach is necessary to occupy SNB and DLAS channels alternately. We inserted a
time slice between the two successive requests to make the ID-request work like ISR
(Interrupt Service Routines). As an example, Figure 8 shows a channel occupation
for three sequential ID-requests. The graph was acquired from an oscilloscope screen
by alternating LED on and off whenever DLAS and SNB channel are used. There are

| start
ID Exchange|
|
[

Time out
(SdOms)

Figure 8. Channel occupation using CLAS ID-Exchange Protocol.
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Figure 9. Performance of multiple mobile modes detection according to mobile wait time and
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three parameters to determine the wave; Mobile wast time (200 ms), duration for
waiting ID-responses, Retry wait time (100 ms), time slice between two consecutive
ID-request, Max retry (3 times), the number of broadcasting ID-request. The ID
correction time depends on these parameters. In this example, it takes 800 ms.

Figure 9 shows the recognition rate according to the various values of mobile wait
time and mazx retry. Ten ML-mobile nodes which were placed in a cell interacted
with a fixture node, and then collected data was forwarded to the server. As a result,
higher recognition rate was achieved by setting a higher amount of mobile wait time
and maz retry. However, when the parameters become greater in amount, the ID
collection time is also increased, which consequently delays the reporting time to the
server. A trade-off is necessary between the recognition rate and the ID collection
time.

We measured the reporting time of ten IDs of MIL-mobile nodes to the server
across multi-hop. In the previous experiment, mobile wait time was an important
factor to determine the recognition rate. The reporting time was measured by varying
mobile wait time and hop counts from the cell to the server. Maz retry and retry wait
time were fixed as 3 times and 100 ms respectively. Figure 10 shows the reporting
time in which collected IDs in each cell (hop) arrives to the server. The minimum
mobile wait time was 150 ms with 3 times of max retry to detect ten nodes at a time
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Figure 10. ID Reporting time according to mobile wait time.
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Figure 11. Performance comparison between NL and ML mobile nodes.

in Figure 9. Even if mobile wait time is set to 200 ms which is enough to detect the
same amount of nodes, all IDs were reported to the server within a second.

The most distinctive feature of CLAS is to adapt ID-exchange protocol between
fixture and mobile nodes which operates on MAC-layer. The CLAS ID-exchange
protocol is alternative to the JOIN procedure of the network-layer to locate mobile
nodes, so it is needed to compare the performance of both cases to report mobile
nodes’ location to the server. Figure 11 shows the comparison of performance of each
case. It takes a constant time for ML-mobile nodes to report their IDs to the server
unless the number of nodes exceeds the queue size, which is the maximum capacity
of fixture node to hold mobile nodes’ information. In case of NL-mobile node, it
shows better performance than when ML-mobile node is used, when there are few
nodes in a cell. As the number of mobile nodes increases, however, the performance
of NL-mobile node is getting worse. This is because more numbers of packets are
needed for JOIN procedure to exchange information between fixture and mobile
node than CLAS ID-exchange protocol. Moreover, the number of packets to be
forwarded to the server is increased in proportion to the number of NL-mobile nodes.
In contrast, in ML-mobile node, the number of packets to be forwarded to the server
can be reduced. It is Because a few number of mobile nodes’ information can be
compressed into a single packet during two processing steps of fixture node, as stated
in Section 3. Therefore, when the number of mobile nodes is small, CLAS ID-
Exchange protocol has a little bit lower performance because of its storing time.
However, under a circumstance which has a large number of mobile nodes, the

proposed protocol makes a significant improvement compared to the JOIN procedure
of COLAS.

6.2 Evaluation and Discussion

During our experiments, we found that the fastest reporting time of ten ML-mobile
nodes can be achieved when mobile wait time is 150 ms, maz retry count is 3 from
Figure 9. However, if the longer mobile wait time doesn’t affect the reporting time
too much, it is better to set the parameter to the higher value since the higher
possibility to hold more mobile nodes at a single cycle of ID-exchange protocol
(recognition rate) can be achieved. Referring to Figure 10, even though mobile wait
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time is doubled, all mobile nodes can be detected within 1.5 second. That means, as
long as this performance is acceptable, setting mobile wait time to lower value than
300 ms may only bring the decrease in recognition rate. Therefore, it is important to
find a trade-off between reporting time and recognition rate to maximize overall
performance satisfying the system requirement.

Queue size of fixture node, which is to hold mobile nodes’ information for a short
time, also affects the overall reporting time. We assumed that the queue size used in
experiment of Figures 9 and 10 was large enough to hold all information of mobile
nodes in a cell, so all mobile nodes’ IDs could be delivered to the server in a constant
time. However, it is also possible that the queue size is smaller than the number of
mobile nodes which wait for ID-exchange with fixture node. In Figure 11, we
intentionally reduced the queue size to five, and ten ML-mobile nodes, which are
larger than the queue size, were placed in a cell. As we expected, it takes two cycles
of ID-exchange protocol, doubling the reporting time.

Mobile wait time, max retry count, and queue size of fixture node can be adjusted
according to the system requirements. In the experiments above, we set the parameters
to fairly lower values to show the visible effect of the parameters even if it was
possible to set to larger values. Therefore, higher performance can be achieved in real
system by setting proper parameter values. For example, queue size can be more
than 100 to accommodate a number of mobile nodes if the storage of fixture node is
enough.

7. CONCLUSION

We mainly focused to adapt bidirectional location-awareness services with high
speed providing sustainability to the existing service. CLAS ID-exchange protocol,
which operates on 802.15.4 MAC-layer, shares its physical-layer, so that no redundant
hardware for communication with mobile nodes is required. Considering the stable
routing condition is very crucial in wireless sensor network, the proposed protocol
can be the right choice for location-awareness service since the direct cause of this
problem is removed by placing interaction between fixture and mobile nodes on
MAC-layer. Traffic distribution over two distinctive channel, SNB and DL AS channels,
make the system use the limited data rate of sensor network effectively. Even though
it may need some work to implement loosely-coupled services, it is worthwhile
because higher performance to locate mobile nodes can be achieved compared to
COLAS. Currently, the proposed protocol only defines communication between the
fixture and mobile nodes in a cell. Future work includes the protocol extension to
support message delivery service among mobile nodes across the sensor network, and
middleware support for this extended protocol.
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