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In a given text T of size n, we need to search for the information that we are interested. In order
to support fast searching, an index must be constructed by preprocessing the text. Suffix array
is a kind of index data structure. The compressed suffix array (CSA) is one of the compressed
indices based on the regularity of the suffix array, and can be compressed to the kth order
empirical entropy. In this paper we improve the lookup time complexity of the compressed suffix
array by using the multi-ary wavelet tree at the cost of more space. In our implementation, the
lookup time complexity of the compressed suffix array is O( n logr σ), and the space of
the compressed suffix array is nHk(T ) +O(n log log n/ n) bits, where σ is the size of
alphabet, Hk is the kth order empirical entropy, r is the branching factor of the multi-ary
wavelet tree such that 2 ≤ r ≤  and r ≤ O( n), and 0 < ε < 1/2 is a constant. 

Categories and Subject Descriptors: E.1 [Data Structures]: Arrays; trees; E.4 [Coding and
Information Theory]: Data compaction and compression; F.2.2 [Analysis of Algorithms
and Problem Complexity]: Nonnumerical Algorithms and Problems−pattern matching;
sorting and searching; H.3.3 [Information Storage and Retrieval]: Information Search and
Retrieval−search process 

General Terms: Algorithms, Theory 
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compression, text indexing, wavelet trees 

1. INTRODUCTION

1.1 Backgrounds 

With the fast development of the Internet and computer technologies, the amount of

the electronic data is growing at an exponential rate. However, as a result, retrieving

useful data efficiently and exactly becomes a big challenge. Therefore, the index data

structure is required to help finding the useful information that we need.

The most basic task of extracting information from text is string matching. String

matching is the process of finding the occurrences of a short string that is called a

pattern inside a text. Two classical indices for string matching are the suffix tree

[McCreight 1976] and the suffix array [Manber and Myers 1993], which permit

finding all the occurrences of any patterns without scanning the text sequentially.

However, the space requirements are from 4 to 20 times the text size. Therefore, the

space of the index obviously becomes the toughest problem. 

A new trend in designing index focuses on compressing the index while permitting

fast access to the index at the same time. As a result, designing a compressed index

is actually to compress an index in order to reduce its space while at the cost of more

time to access it. Therefore, a lot of work has been done to obtain various tradeoffs

between the space taken by the index and the time to access the original index. We

denote accessing the original index by the term lookup.

The leading research work on compressed indices is represented by the compressed

suffix array, the FM-index [Ferragina and Manzini 2005; Ferragina et al. 2007] and

the compact suffix array [Makinen 2003; Makinen and Navarro 2004], which support

the functionalities of suffix arrays and suffix trees while stored in compressed form.

All of the three indices take advantage of diffierent regularities of the suffix array to

achieve compressibility. The compressed suffix array [Grossi and Vitter 2006] defines

the function Ψ to represent the suffix array in compressed form while permitting fast

access to the suffix array. The compressed suffix array was developed into a self-index

and is related to the 0th empirical entropy [Sadakane 2002; Sadakane 2003].

The most recent result of compressed suffix arrays was given by Grossi et al.

[Grossi et al. 2003]. In their main result, they show that the space of compressed

suffix arrays can be related to the kth order empirical entropy by introducing a new

partition scheme of function Ψ. In their implementation, they first do a recursive

suffix array decomposition to obtain conceptual data structures of compressed suffix

arrays. Then they partition the function Ψ at each maintained level of the recursive

decomposition. Finally they implement these function Ψ at all of the maintained

levels and some other data structures using compressed representations of binary

sequences supporting rank and select [Pagh 1999; Raman et al. 2002]. Moreover, they

introduce the wavelet tree to implement the function Ψ of the first recursive

decomposition and maintain implementations of other levels unchanged in order to

obtain a more compact space complexity of compressed suffix array at the cost of more

lookup time. In this space/time tradeoff, given a text T of size n, they implement

compressed suffix arrays using ε−1nHk(T)+O(n log log n/ n) bits of space andlog
σ

ε
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permitting O( n logσ) lookup time, where σ is the size of the alphabet, Hk is

the kth order empirical entropy, and ε is a constant such that 0 < ε < 1/2. This tradeoff

is shown in the first row of Table I. 

1.2 Our Contributions 

In this paper we improve the lookup time complexity of the implementation of

compressed suffix arrays given by Grossi et al. [Grossi et al. 2003]. We use multi-ary

wavelet trees [Ferragina et al. 2007] to implement function Ψ of the first level of the

recursive decomposition in compressed suffix arrays that was previously implemented

using binary wavelet trees, and maintain the implementation of other parts of the

structure unchanged. Our main contribution is an implementation of compressed

suffix arrays using ε
−1nHk(T)+O(n log log n/ n) bits of space while supporting

O( n logr σ) lookup time, where r is the branching factor of the multi-ary

wavelet tree such that 2 ≤ r ≤  and r ≤O( n).

The general form of our result is shown in the second row of Table I. We improve

the previous lookup time complexity O( n log σ) to O( n logr σ) at the

cost of O(r log log n/log
σ
n) bits of more space, where 2 ≤ r ≤  and this condition is

due to the multi-ary wavelet tree. When 2 ≤ r ≤  and r ≤O( n), O(r log log n/

log
σ
n) can be absorbed into the O(n log log n/ n), and thus our main result

described above is obtained. When 2 ≤ r ≤  and r >O( n), the compressed

suffix array takes ε
−1nHk(T)+O(r log log n/ n) bits of space while supporting

O( n logr σ) lookup time. In this result we improve the lookup time complexity

further for increased value of r, while at the cost of larger space complexity. 

Moreover, when the alphabet is O(polylog(n)) which is a reasonable size of alphabet

for natural languages, the space of the compressed suffix array can be bounded by

ε
−1nHk(T)+O(n log log n/ n)+O(n/logμ n) bits and the lookup time complexity is

O( n), where μ is a constant such that 0 < μ < 1. The space can be bounded

by ε
−1nHk(T)+O(n log log n/ n) bits when ε ≤ μ < 1. 

2. PRELIMINARIES 

2.1 The Empirical Entropy of a Text 

Let T denote a text of size n. Each character of T belongs to an ordered alphabet

Σ ={α1,..., ασ
} of size σ. Let T[i] be the ith character in T, Ti be the suffix of T starting

from position i, and Ti,j be the substring of T starting at position i and ending at

logσ
ε/ 1 ε–( )

log
σ

ε

logσ
ε/ 1 ε–( )

n logσ
1 ε–

logσ
ε/ 1 ε–( )

logσ
ε/ 1 ε–( )

n

n logσ
1 ε–

log
σ

ε

n logσ
1 ε–

log
σ

logσ
ε/ 1 ε–( )

log
σ

ε

logσ
ε/ 1 ε–( )

log
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Table I. Comparison of complexities between a previous result and our result on compressed suffix

arrays. α and ε are constants such that 0 < α < 1 and 0 < ε <1/2. 

CSA Space (bits) Lookup Time Conditions 

CSA 

[Grossi et al. 2003] 
ε
−1
nHk +O O
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ε
−1
nHk +O

+O

O
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n log log n
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⎛ ⎞

r log log n
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⎛ ⎞

logσ

ε
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----------
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position j. T[n] = # is a special character in Σ that only occurs once and

lexicographically larger than any other characters in Σ. Let ni denote the number of

occurrences of the character αi in T. 

The 0th order empirical entropy of T [Manzini 2001] is defined as 

,

where we assume 0 log 0 = 0 (all logarithms are taken to base 2 in this paper). The

value of nH0(T) represents the maximum compression we can achieve by using a fixed

codeword that can be uniquely decoded to each alphabet character. 

We can achieve greater compression by choosing the codeword of αi depending on

the k characters preceding it (we call these k characters a context, where k is a

constant). For any length-k context , let xT be the concatenation of the single

characters following each occurrence of x inside T. The kth order empirical entropy of

T [Manzini 2001] is defined as 

Hk (T) = .

The value of nHk(T) represents a lower bound to the compression we can achieve

using codes which depend on their length-k contexts. 

2.2 The Suffix Array and Function Ψ 

The suffix array [Manber and Myers 1993] is an array SA[1, n] which contains all

starting positions of the suffixes of the text T such that TSA[1]  TSA[2]  TSA[3] 

…  TSA[n]
, where “ ” represents the lexicographical order between strings, i.e., the

H0 T( ) = −  

i 1=

σ

∑
ni

n
----- log

ni

n
-----

x Σ
k

∈

1
n
---

 

x Σ
k

∈

∑ xT H0 xT( )

Figure 1. The suffix array and function Ψ of text T = cabbdaccbdbadca#. 
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suffix array gives the lexicographical order of all suffixes of the text T. The suffix

array takes O(n log n) bits of space. Given a pattern P of size p, the suffix array

answers the number of occurrences of P in O(p log n) time. An example of the suffix

array is shown in Figure 1. The core concept of compressed suffix arrays is based on

the regularity of the suffix array − the function Ψ [Grossi and Vitter 2006; Sadakane

2002; 2003; Grossi et al. 2003], which maps suffix TSA[i] to suffix TSA[i]+1 in the suffix

array and thus enables scanning the text through the indices of the suffix array in

forward direction. Its formal definition is as follows: 

Ψ(i) = j, such that SA[ j] = SA[i] (mod n)+1. 

An example of function Ψ is shown in Figure 1. 

We introduce regularities of the function Ψ that can be used in compressing Ψ.

Since suffixes are sorted in SA, we can partition SA into at most σ intervals according

to the first character of each suffix TSA[i]. For character , we define y-list such

that Ψ(i) is in y-list if the first character of TSA[i] is y. For example, in Figure 2,

observe that, for , Ψ(i) belong to b-list because the first character of suffixes

TSA[i] is b. Each y-list can further be partitioned into sublists  using a k-

character prefix x (length-k context x) of each suffix TΨ(i) in y-list. An example of this

partition scheme is shown in Figure 2, when k = 1. Note that yx is a prefix of TSA[i]

for entries in  and all entries in the row corresponding to a context x form a

contiguous index interval of the suffix array [Grossi et al. 2003]. 

2.3 Compressed Representations of Sequences 

Most all compressed full-text indices take advantage of compressed representations of

sequences which support rank and select operations on it. Given a general sequence

T of length n, where T[i] = c and , we compress it while supporting the following

operations: 

− T[i]: accesses the ith entry of T; 

− rankc(T, i): returns the number of occurrences of character c in T1,i ; 

− selectc(T, j): returns the position of the jth occurrence of character c in T. 

The simplified form is the compressed representation of binary sequences. One recent

solution for representing compressed binary sequences is given by Pagh [Pagh 1999]

and Raman et al. [Raman et al. 2002]. 

y Σ∈

5 i 8≤ ≤

x, y〈 〉

x, y〈 〉

c Σ∈

Figure 2. An example of Partitioning Ψ according to its length-k contexts, when k = 1. 
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Lemma 2.1 [Pagh 1999; Raman et al. 2002] Let B[1, n] be a binary sequence

containing t occurrences of bit 1. There exist a fully indexable dictionary (FID) that

supports B[i], rank
c
(B, i) and select

c
(B, j) in constant time using 

bits of space, where .

Grossi et al. [Grossi et al. 2003] introduced the wavelet tree which is a balanced

binary search tree. A lemma regarding the wavelet tree is given as follows: 

Lemma 2.2 [Grossi et al. 2003] Let T[1, n] be a string over an arbitrary alphabet

Σ, where |Σ| = σ. The wavelet tree built on T takes

bits of space and for any character  and , , supports 

O (log σ) 

time T[i], rank
c
(T, i) and select

c
(T, j) operations. 

The wavelet tree has been extended to its generalized form − the multi-ary wavelet

tree [Ferragina et al. 2007], as shown in Figure 3. The height of this r-ary tree is at

most 1+log
r
σ, which is smaller than that of the binary wavelet tree. Then the access,

rank and select can be calculated in a similar way as in the binary wavelet tree. 

Lemma 2.3 [Ferragina et al. 2007] Let T[1, n] be a sequence over an arbitrary

alphabet Σ, where |Σ| = σ. The multi-ary wavelet tree built on T for 2 ≤ r ≤min(σ, )

takes 

bits of space, and supports queries T[i], rank
c
(T, i) and select

c
(T, j) in 

log
n

t⎝ ⎠
⎛ ⎞ + O

n log log n
log n

----------------------------⎝ ⎠
⎛ ⎞ = nH0 B( ) + O

n log log n
log n

----------------------------⎝ ⎠
⎛ ⎞

c 0, 1{ }∈

nH0 T( ) + O
n log log n

log
σ
n

----------------------------⎝ ⎠
⎛ ⎞

c Σ∈ 1 i n≤ ≤ 1 j n≤ ≤

n

nH0 T( ) + O σ log n( ) + O
rn log log n

log
σ
 n

-------------------------------⎝ ⎠
⎛ ⎞

Figure 3. An example of the multi-ary wavelet tree, when σ = 8, r = 3. 
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O(logr σ) 

time, for any  and . 

If σ = O(polylog(n)), then r can be chosen so that the resulting multi-ary wavelet tree

takes 

bits of space and supports all the three kinds of queries in constant time, for any

constant 0 < μ < 1. 

Note that it should be guaranteed that r = o(log n/log log n) [Ferragina et al. 2007].

3. COMPRESSED SUFFIX ARRAY 

In this section we introduce the compressed suffix array (CSA) and a recent

implementation [Grossi et al. 2003]. We focus on the data structures of CSA, the

decomposition scheme, the space and lookup time complexity analysis. As for how to

do different kinds of queries and how to achieve self-indexing, the descriptions are

given in [Sadakane 2002; 2003] in detail, and are not covered here. 

CSA contains the same information as the suffix array, which requires less space

while at the cost of non-constant lookup time. A general introduction for CSA is as

follows: given a text T of length n and its suffix array SA, the compressed suffix array

for T supports the following operations without requiring explicit storage of T or SA:

− compress: produces a compressed representation that encodes T and SA;

− lookup: given 1 ≤ i ≤ n, returns SA[i];

− substring: decompresses the substring of T consisting of the first s characters (a

prefix) of the suffix TSA[i], for 1 ≤ i ≤ n and 1 ≤ s ≤ n. SA[i] + 1. 

We first introduce the basic structure of CSA and then one recent implementation. 

3.1 Basic Structure of Compressed Suffix Arrays 

Now we introduce the recursive decomposition scheme of CSA during which its

structure is built. In the base case, we denote SA by SA0, and let n0 = n. For simplicity

we assume that n is a power of 2. In the inductive phase 0 ≤ l ≤ h where h is the final

phase, we start with suffix array SAl, which is available by induction. SAl stores a

permutation of 1, 2,..., nl, where nl = n/2l. The permutation results from sorting the

suffixes of T whose starting positions are multiples of 2l. That is, in each inductive

phase 0 ≤ l < h, given SAl, we transform it into an equivalent but more succinct

representation consisting of a binary sequence Bl, the function Ψl and a suffix array

SAl+1. We run three main steps as follows: 

(1) Construct a binary sequence Bl of nl bits supporting rank, such that B[i] = 1 if

SAl[i] is even and B[i] = 0 if SAl[i] is odd; 

(2) Construct function Ψ on SAl, which is denoted by Ψl; 

(3) Group together even text positions in SAl and divide each of them by 2. The

resulting values form a permutation of {1, 2,..., nl+1}, where nl+1 = nl/2 = n/2l+1. Store

them in a new suffix array SAl+1 of length nl+1 and remove the old suffix array SAl.

c Σ∈ 1 i, j n≤ ≤

nH0 T( ) + O
n

log
μ
n

----------------⎝ ⎠
⎛ ⎞
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Figure 4 illustrates the process of the recursive decomposition scheme. We store Bl

and Ψl for 0 ≤ l < h, and SAh for l = h. Note that SAl is not stored for 0 ≤ l < h. 

Given Bl and Ψl for 0 ≤ l < h, and SAh stored for l = h, the original SA[i] can be

retrieved in O(h) time for any 1 ≤ i ≤ n if both Bl and Ψl can be accessed in constant

time. Lookup for SAl[i] can be answered as follows: 

SAl[i] =  

We introduce a basic implementation of CSA. We can keep a total of three levels:

level 0, level h' = log log n and level h = log log n. The problem is how to reconstruct

SA0 from SAh'
 and how to reconstruct SAh'

 from SAh. Since there are nh'
 entries of SA0

stored into SAh'
, we redefine B0 of length n such that its 1 bits mark the positions of

SA0 that are maintained in SAh'
. Similarly we redefine Bh'

. 

In order to retrieve SA0[i], we use Ψ0 to walk along indices i', i'', ..., such that

SA0[i]+1 = SA0[i'], SA0[i']+1 = SA0[i''], and so on, until we reach an index marked by

B0. Let s be the number of steps in the walk and r be the rank of the index thus found

in B0. We switch to level h' and reconstruct the rth entry at level h' from the explicit

representation of SAh by a similar walk until we find an index marked by Bh'
. Let s'

be the number of steps in the latter walk and r' be the rank of the index thus found

in Bh'
. Then SA0[i] = SAh[r']·2h + s' · 2l' + s · 20, which means the lookup time complexity

is O( ). 

3.2 Implementation using Wavelet Trees 

Now we describe an implementation given by Grossi et al. [Grossi et al. 2003]. In

order to store the final data structures in a more general setting, we maintain the

following levels:

− Level 0 is the same as before;

− The last level h = log log n − ε log log
σ

n − log log log n, where 0 < ε < 1/2 is a

constant; 

− Level h' = log log
σ

n between level 0 and level h; 

− One level every other γh' levels between level 0 and level h', where γ = ε/(1−ε) with

2 SAl 1+ rank1 Bl, i( )[ ] ⋅ if Bl i[ ]=1

SAl Ψl i( )[ ]−1 if Bl i[ ]=0⎩
⎨
⎧

1

2
---

log n

Figure 4. An example of suffix array decomposition. 
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0 < γ < 1, i.e., γ −1 + 1 = ε
−1. 

That is, we maintain ε−1 − 1 levels between level 0 and level h' (including boundary

levels), and ε−1 levels in total. 

Thus we have to store the following information: 

− Ψl and Bl for all l = iγh' where 0 ≤ i ≤ ;

− SAh for l = h. 

We show how to store these information efficiently. According to the regularity of the

function Ψ, at each level l for 0 ≤ l ≤ h', Ψl forms σk contiguous intervals as described

in Section 2.3. At level 0, each contiguous interval belonging to the same context x is

implemented using a wavelet tree. At level 0 < l ≤ h', each sublist  is implemented

using a FID. And each Bl for 0 ≤ l ≤ h' is also implemented using a FID respectively.

Finally, at level h, SAh is stored explicitly. A summary is given in Table II. By adding

up the space of all data structures above, we get the following lemma: 

Lemma 3.1 [Grossi et al. 2003] The compressed suffix array can be implemented

using 

bits of space, where k ≤ α log
σ

n, 0 < α < 1, so that lookup operation (accessing to the

original suffix array entries) takes 

time, for any fixed value 0 < ε < . 

4. COMPRESSED SUFFIX ARRAYS USING MULTI-ARY WAVELET TREES

In this section we give our proposition of CSA by using multi-ary wavelet trees to

improve the lookup time complexity of CSA. We show that multi-ary wavelet trees

can be applied to implement Ψ0 so that lookup time complexity can be improved. We

use the same suffix array decomposition scheme that is used in Section 3.2. 

In order to get a general result, we consider the multi-ary wavelet tree without

giving any assumptions on the alphabet Σ first. By utilizing multi-ary wavelet trees

1
γ
---

x, y〈 〉

1
ε
---nHk T( )+O

n log log n

log
σ 
ε
n

----------------------------⎝ ⎠
⎛ ⎞

O logσ

ε

1 ε–
----------

n log σ⎝ ⎠
⎛ ⎞

1

2
---

Table II. The space complexities of all data structures of compressed suffix arrays.

Information Data Structure Space Complexity (bits) 

Ψ0 Wavelet Tree nHk + O 

Ψl for 0 ≤ l ≤ h' FID nHk + O

Βl for 0 < l ≤ h' FID O

SAh Integer Array O

n log log n

log
σ
n

-----------------------------

⎝ ⎠
⎛ ⎞

1
γ
---

n log log n

log
ε

 n
-----------------------------

⎝ ⎠
⎛ ⎞

n log log n

logσ

ε

 n
-----------------------------

⎝ ⎠
⎛ ⎞

n log log n

log
σ

ε

 n
-----------------------------

⎝ ⎠
⎛ ⎞
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to implement Ψ0 belonging to the same contexts, we can obtain that the following.

Theorem 4.1 By utilizing multi-ary wavelet trees to implement Ψ0, the compressed

suffix array can be implemented using 

bits of space, when r ≤O( ), or using 

bits of space, when r > O( ), where k ≤ α log
σ
 n − 1, 0 < α < 1, so that accessing

to the original suffix array entries takes 

time, for any fixed value 0 < ε < , and r is the branching factor of the multi-ary

wavelet tree such that 2 ≤ r ≤ min(σ, ). 

Proof. Our proposition differs from the original one only in the implementation of

Ψ0. We begin with proving the space of multi-ary wavelet trees for Ψ0. For each

context x, namely, a row in Figure 2, we use one multi-ary wavelet tree to encode Ψ0

belonging to the same x. By Lemma 2.3 we have that the space taken by each row is

bits of space, where nx is the number of Ψ0 entries in context x. Since there are at

most σk contexts, by adding up the space we obtain that the space consumes at most 

bits. 

The first term is due to the definition of the kth order empirical entropy, that is 

.

The second term holds as follows 

.

To compare  and O(n log log n/ ), we have

.

The first inequality is due to the fact that k < α log
σ

n − 1 for 0 < α < 1. Thus O(σ k+1

1
ε
---nHk T( )+O

n log log n

log
σ 

ε

n

----------------------------⎝ ⎠
⎛ ⎞

log
σ

1 ε–

n

1
ε
---nHk T( )+O

r log log n

log
σ n

---------------------------⎝ ⎠
⎛ ⎞

log
σ

1 ε–

n

O log
σ

ε

1 ε–

----------

n logr σ⎝ ⎠
⎛ ⎞

1

2
---

n

n
x
H0 x

Ψ
0

x( )+O σ log n
x( )+O

rn
x
 log log n

x

logσ n
x

-----------------------------------⎝ ⎠
⎛ ⎞

nHk+O σk 1+

log n( )+O
rn log log n

logσ n
-------------------------------⎝ ⎠
⎛ ⎞

 

x Σ
k

∈

∑ n
x
H0 x

Ψ
0

x( ) = nHk

 

x Σ
k

∈

∑ O σ log n
x( ) O σ log 

n1 n2 … n
σ
k+ + +

σ
k

---------------------------------------

⎝ ⎠
⎜ ⎟
⎛ ⎞σ

k

⎝ ⎠
⎜ ⎟
⎛ ⎞

 = O σ
k 1+

 log n( )≤

O σ
k 1+

 log n( ) logσ 

ε

n

O
n log log n

logσ 

ε

n

----------------------------⎝ ⎠
⎛ ⎞

O σ
k 1+

logn( )
-------------------------------------- O

n
1 α–

 log log n log
ε

σ

log
1 ε+

n
----------------------------------------------------⎝ ⎠
⎛ ⎞

O≥ ≥ log logn log
ε

σ( )
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log n) can be absorbed into O(n log log n/ ). 

The third term is due to that 

.

Note that the inequality holds because O(rnx log log nx/log
σ
 nx) is a concave function.

To compare O(rn log log n/log
σ
 n) and O(n log log n/ n), we have that

 

.

Therefore, when r is chosen to be r ≤O( ), O(rn log log n/log
σ

n) can be

absorbed into O(n log log n/ n); when r > O( ), O(n log log n/ n) can be

absorbed into O(rn log log n/log
σ

n). 

Because other data structures are the same as before, by adding the space of all of

them together the space of Theorem 4.1 is proved.

The only remaining task is to compare the time of stepping from level 0 to level h'

and that of stepping from level h' to h. The former one is 

.

And the latter one is 

.

Therefore, the final lookup time complexity is O( ). 

Note that this lookup time has been improved over Lemma 3.1 at the cost of more

space 

By bounding the alphabet to be O(polylog(n)), which is a reasonable alphabet size, we

can prove the improvement to be as follows: 

Corollary 4.1 If σ = O(polylog(n)), then r can be chosen so that by utilizing the multi-

ary wavelet tree to encode Ψ0 values, the compressed suffix array can be implemented

using 

bits of space, when , or using 

bits of space, when 0 < μ < ε, where log
σ

n, 0 < α < 1, so that lookup time

log
σ 
ε

n

 

x Σ
k

∈

∑ O
rn

x
 log log n

x

logσ n
x
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⎝ ⎠
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k
O
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σ
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σ
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n

σ
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⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

 = O
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logσ n
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⎝ ⎠
⎛ ⎞≤

logσ 
ε

O
rn log log n

logσ n
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⎝ ⎠
⎛ ⎞

O
n log log n

logσ 
ε

n
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⎝ ⎠
⎛ ⎞

------------------------------------------ = O
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logσ 
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n
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logσ 
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O logσ 
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2
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(accessing to the original suffix array entries) takes 

time, for any fixed value 0 < ε < . 

Proof. The analysis is similar to the proof of Theorem 4.1. That is, for each context

x, each multi-ary wavelet tree requires

bits.

When adding up the space taken by multi-ary wavelet trees corresponding to all x,

bits of space is required.

Note that the inequality holds because O(nx/logμ nx) is a concave function. 

To compare O(n log log n/ n) and O(n/logμ n), we obtain that 

.

Therefore, if 0 < μ < ε, O(n log log n/ n) can be absorbed into O(n/logμ n); in the

other case if , O(n/logμ n) can be absorbed into O(n log log n/ n). By

putting up all data structures together, the space in Corollary 4.2 is proved.

The last piece of proof is the time complexity when stepping from level h' to h,

which can be obtained as the following: 

 

5. CONCLUSION 

In this paper we focused on improving lookup time complexity of the compressed

suffix array. We improve the lookup time complexity of compressed suffix arrays

using multi-ary wavelet tree at the cost of more space. We proved that the compressed

suffix array can be stored in  bits of space, where r

is the branching factor of the multi-ary wavelet tree, so that lookup time of the

compressed suffix array can be improved to O( ). When σ = O(polylog

(n)), we showed that the space of the compressed suffix array is 

 + O(n/logμ n) bits, where μ is a constant such that 0 < μ < 1, and

the lookup time was improved to O( ). 
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