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Given an n-length text T over a σ-size alphabet, we present a compressed representation of T
which supports retrieving queries of rank/select/access and updating queries of insert/delete.
For a measure of compression, we use the empirical entropy H(T), which defines a lower bound
nH(T) bits for any algorithm to compress T of n log σ bits. Our representation takes this
entropy bound of T, i.e., nH(T) ≤ n log σ bits, and an additional bits less than the text size, i.e.,
o(n log σ) + O(n) bits. In compressed space of nH(T) + o(n log σ) + O(n) bits, our representation
supports O(log n) time queries for a log n-size alphabet and its extension provides O((1+ )
log n) time queries for a σ-size alphabet.

Categories and Subject Descriptors: Succinct Data Structures [Algorithms and Complexity]

General Terms: Compressed Full-Text Index, Rank/Select Structure

Additional Key Words and Phrases: compression, data structure, index, rank, select, text

1. INTRODUCTION

For text processing data structures, we consider two basic functions: rank(c, i) which

counts the number of occurrences of character c up to position i and select(c, k) which

finds the position of the k-th character c. These rank/select functions are simple but

powerful so that these functions coupled with Burrows-Wheeler Transform (BWT)

directly support compressed full-text indices such as FM-index [Ferragina and

Manzini 2005] and Compressed Suffix Arrays [Grossi and Vitter 2005]. Given an n-

length text over a σ-size alphabet, the compressed full-text indices provide pattern

searching in only O(n log σ) bits of text itself. In the compressed full-text indices, the

rank function is a key of the pattern searching algorithms and the select function is

essential to reduce the sizes of indices.

Moreover, the space of rank/select functions defines the sizes of compressed full-text
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indices. A rank/select function with the space of text itself makes compressed full-text

indices of O(n log σ) bits, and a compressed function with O(nH(T)) bits, where H(T)

is the empirical entropy that is a lower bound of any compression algorithm for T

[Manzini 2001], produces more compressed indices of O(nH(T)) ≤ O(n log σ) bits. In

this paper we consider a dynamic and compressed rank/select function which reflects

update of texts while keeps texts in a compressed form. This is a basic component of

a dynamic compressed full-text indices such as [Chan et al. 2004].

The dynamic rank/select structure was first considered on binary strings as a

special case of the dynamic partial sum problem by Raman et al. [Raman et al. 2001]

and Hon et al. [Hon et al. 2003]. These binary rank/select structures can be extended

for a σ-size alphabet by binary wavelet trees [Grossi et al. 2003] with O(log σ)

slowdown factor. Mäkinen and Navarro 2006; 2008] first proposed a compressed

structure of nH(T) + o(n log σ) bits with O(log σ log n) worst-case time operations. Lee

and Park [Lee and Park 2007] proposed an uncompressed but faster structure, which

provides O((1+ ) log n) worst-case time rank/select queries and O((1+ ) log n)

amortized time insert/delete queries in space of n log σ + o(n log σ) bits. These improved

operations were the results of extending O(log n) time operations for a log n-size

alphabet by k-ary wavelet trees [Ferragina et al. 2007] with O(logk σ) slowdown

factor. Recently, González and Navarro [González and Navarrow 2008] achieved both

compressed space of nH(T) + o(n log σ) bits and O((1+ ) log n) worst-case time

for all operations. Note that there are rank/select structures not based on wavelet

trees such as Gupta et al.’s [Gupta et al. 2007].

In this paper we propose a compressed structure of our previous result [Lee and

Park 2007], and this is a simple alternative to González and Navarro’s structure

[Gonzalez and Navarro 2008]. González and Navarro use a block-identifier encoding

of nH(T) + o(n) bits [Ferragina et al. 2007; Raman et al. 2002] to compress texts and

propose a theoretical counting structure to guarantee worst-case time updates.

Instead of the complex block-identifier encoding, we employ a gap encoding of nH(T)

+ O(n) bits [Grossi et al. 2004; Mäkinen and Navarro 2007; Sadakane 2003], which

takes slightly more space but supports practical implementations of compressed full

text indices [Grossi et al. 2004]. We also propose a simple counting structure with

amortized updates. Then, we obtain a compressed structure providing the queries in

the same time as [Lee and Park 2007]. In compressed space of nH(T) + o(n log σ) +

log σ

log log n
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log log n
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log σ

log log n
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Table I. Dynamic rank/select structures (for a large alphabet).

Time Space Reference

Uncomp-

ressed

O(log σ logb n) rank/select

O(log σb) insert/delete
n log σ + o(n log σ) [Hon et al. 2003]

O((1/e) log log n) rank/select

O((1/e)ne) insert/delete
n log σ + o(n log σ) [Gupta et al. 2007]

O((1 + ) log n) n log σ + o(n log σ) [Lee and Park 2007]

Comp-

ressed 

O(log σ log n) nH(T) + o(n log σ) [Mäkinen and Navarro 2006]

O((1 + ) log n) nH(T) + o(n log σ) 
[González and Navarro 2008]

This paper

logσ
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logσ
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O(n) bits, our rank/select/access queries take worst-case O(log n) time and insert/

delete queries use amortized O(log n) time for a log n-size alphabet. For an O(ne)-size

alphabet, we obtain O((1+ ) log n) time queries by using log n-ary wavelet trees.

This paper is organized as follows. Section 2 introduces preliminaries such as the

empirical entropy of texts and the gap encoding. Section 3 shows how to organize gap

encoded texts for supporting rank/select functions and updates of texts. In Section 4,

we describe a simple counting structure for rank/select functions. Section 5 presents

an extension for a large alphabet and an application to the BWT of texts for a high-

order entropy compression. Section 6 finally concludes.

2. DEFINITIONS AND PRELIMINARIES

Let T = T[1]T[2]...T[n] be an n-length text and Σ = {0, 1, ..., σ − 1} be a σ-size alphabet.

We first assume a log n-size alphabet, i.e., σ ≤ log n and then show how to handle a

general alphabet. We assume the RAM model with constant time arithmetic and

bitwise operations on a word of Θ(log n) bits. In the RAM model, we can access its

memory by the pointers of O(log n) bits.

Empirical entropy. To measure the efficiency of compression, we define the empirical

entropy H(T) of T which is a lower bound of any compression algorithm for input text

T [Manzini 2001]. The zeroth order empirical entropy H0(T) is a lower bound of

compression algorithms considering numbers of occurrences of characters. Let nc be

the total number of occurrences of c in T. The zeroth order empirical entropy H0(T)

is defined by 

From the concavity of the entropy, . The high-order empirical entropy is

a lower bound of compression algorithms using a context that is k characters preceding

each character of T. Let Σk be the set of all k-length words and wT denote the

concatenation of the characters following w in T. The k-th order empirical entropy

Hk(T) is defined by 

Note that Hk+1(T ) ≤ Hk(T ) ≤ log σ for any text T. We simply use H0 or Hk instead of

H0(T ) or Hk(T ) if the text T is not ambiguous. To represent T in nH0 bits with updates

of T, we can’t use global information nc/n, so we employ an encoding scheme

depending on local information.

Gap encoding. The gap encoding achieves the entropy bound of nH0(T ) bits by using

only local information [Grossi et al. 2004; Mäkinen and Navarro 2007; Sadakane

2003]. Let , , ...,  be the positions of occurrences of c in T. The gap encoding

of T, G(T ), encodes the distances of adjacent occurrences, − . Then, the size of

G(T ) is |G(T )|=

log σ
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where = 0 and  is the code of  (called the C-code) by a self-

delimiting code. The self-delimiting code is a prefix coding of integer values which

represents a positive integer x in  bits, where a and b are some constants.

The occurrences distance  is encoded in  bits. Then, the

total size of the gap encoding takes a(H0 + 1)n + bn bits, i.e., |G(T )| ≤ a(H0 + 1)n +

bn.

On the RAM model, it takes constant time to encode x or decode C(x) by using o(n)

bits table. Examples of self-delimiting codes are γ-code and δ-code by Elias [Elias

1975]. The γ-code represents x as 1|b(x)|−10b(x), where b(x) is a simple binary

representation of x. The γ-code size of x is 2 + 1 bits. If we use δ-code, the code

size is reduced to + o(log x) bits, where the δ-code representation of x is

1b(|b(x)|)−10b(|b(x)|)0b(x).

Lemma 2.1. Given a text T, the total size of gap encodings of T with a self-delimiting

code is |G(T )| ≤ nH0 + o(nH0) + O(n) bits and it takes O(|T|) time to encode T and to

decode G(T ) by using additional tables of o(n) bits.

Problem definition. Our problem is to represent T in a compressed form which

supports updates of T by insertions or deletions of a character. The size of this

compressed form should achieve the empirical entropic space, nH0(T ) bits. We also

provide the following rank/select queries on T in the compressed form.

− rankT(c, i): gives the number of character c in T[1..i].

− selectT(c, k): gives the position of the k-th c in T.

3. DYNAMIC COMPRESSED REPRESENTATION OF TEXTS

In this section, we describe a gap-encoded representation of T over a log n-size

alphabet which provides the O(log n) time queries of access, insert, and delete in space

of nH0 + o(nH0) + O(n) bits. Our key observation is that the gap encoding can be

applied to a partition of T. Therefore, we partition T into m substrings T1, T2, ..., Tm

and encode each Tj by the gap encoding with a self-delimiting code. Our representation

also considers rank/select queries on a substring Tj and the complete rank/select

queries on T will be given in Section 4.

We first show that the gap encoding of a partition of T has a smaller size than the

whole encoding of T, i.e., |G(Tj)|≤|G(T )|. The occurrence distances of G(T1),

G(T2), ..., G(Tm) have smaller values than those of G(T ), because we encode the first

c-occurrence of each Tj by the distance from the starting position of Tj, not the

p0
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Figure 1. Gap encoding of a partition of the text.
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distance from the previous c-occurrence in Tj−1. See Figure 1. Since the size of |C(x)|

= a + b has the property that |C(x)|≤|C(y)| for any integer 1 ≤ x ≤ y, the size

of the encoded partition becomes |G(Tj)|≤|G(T )|.

Lemma 3.1. Given a partition of text T = T1T2 ...Tm, the total size of gap encodings

of Tj with a self-delimiting code becomes |G(Tj)|≤|G(T )|≤nH0 + o(nH0) + O(n)

bits.

Now we present how to organize encoded Tj for rank/select and update queries. The

partitioning of T is made so that the size of a code block, |G(Tj)|, to be log2 n to

4 log2n bits. We encode T from beginning to end and make a new code block G(Tj)

whenever the encoding of the current substring of T exceeds 2 log2 n bits. By Lemma

3.1, the total size of the code blocks is |G(Tj)| ≤ |G(T )| ≤ nH0 + o(nH0) + O(n)

bits.

The length of Tj satisfies ≤ |Tj| ≤ 4 log2 n as follows. The number of C-

codes in G(Tj), which is the same as |Tj|, cannot exceed |G(Tj)|. Since |G(Tj)|≤

4 log2 n, we get the upper bound. Since log2 n ≤ |G(Tj)|≤ (1 + o(1))|Tj|H0(Tj) + O(|Tj|),

we have |Tj| ≥ . Because H0(Tj) ≤ logσ, we get the lower bound |Tj| ≥

. Then, the total number, m, of code blocks is O( ) = O( ) for

σ ≤ log n.

For rank/select on Tj with a log n-size alphabet, our idea is to store the C-codes of

G(Tj) in order of characters so that the C-codes of a same character c can be scanned

in sequential. As in the example of Figure 2, G(Tj) is the concatenation of Gc(Tj) for

all characters c. To access the C-codes of c, we reserve O(σ log log n) bits for each G(Tj)

to mark the position of the starting C-code for each c. Its total overhead becomes m·

O(σ log log n) = O( ) bits for σ ≤ log n.

Our representation is illustrated in Figure 3. We build a red-black tree where a leaf

node is G(Tj) and an internal node maintains the number of code blocks in its subtree.

By traversing this tree, we can find G(Tj) for given block number j. We use a dynamic

bit vector I that represents the length of Tj. I has total n bits, where the j-th 1 denotes

the starting position of Tj and the following |Tj|−1 0s indicate the length of Tj. By

using I, we divide a rank/select query to two level queries: an over-block query which

counts the number of c in the code blocks before Tj and an in-block query which

log x
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Figure 2. Example of a code block G(Tj).

Figure 3. Layout of our structures.
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counts the number of c in Tj.

Now we describe the processing of rank/select queries on Tj by using o(n) bits table.

For complete rank/select on T, we describe auxiliary structures handling rank/select

over Tj in the next section. We define the following tables for all bit patterns of a log n/

2 bits code, x = C(d1)C(d2) ... C(dl) and position t of x [Makinen and Navarro 2007].

−G[x][t]: the maximum number, k, of C-codes in x[1..t].

− Pos[x][t]: the total length of the k C-codes in x[1..t], i.e., |C(di)|. 

−DPos[x][t]: the decoded values sum of the k C-codes in x[1..t], i.e., di.

−H[x][p]: the maximum k' such that  di ≤ p, where p ≤ log2 n.

Using these tables, we process rank/select on Tj by scanning G(Tj) of c log2 n bits in

O(log n) time. The detailed steps use the binary rank/select by Mäkinen and Navarro

[Mäkinen and Navarro 2007].

Rank/select queries. To answer (c, i), we first find the starting C-code for c.

Then, we sums up the decoded distances of the C-codes in a code of log n/2 bits by

using table DPos. To find the boundaries of C-codes, we compute the number of C-

codes and the length of C-codes by using tables G and Pos, respectively. These tables

enable us to scan G(Tj) by log n/2 bits at once. If the sum of decoded distances is

greater than i, we get the final code of log n/2 bits that contains the last C-code of

Tj[p] = c with p < i. We can decode the final code one-by-one in O(log n) time. For

(c, k), we check whether the numbers of C-codes exceeds k to get the final code

containing the k-th c of Tj.

Let us consider Gb(Tj) = C(2)C(1)C(4)|C(2)C(1)C(3)|C(8)C(1) in the example of

Figure 2. We assume that these C-codes of Gb(Tj) are grouped by log n/2 bits. Note

that the boundary of a code of log n/2 bits may not be consistent with a C-code

boundary, but we can find the correct position of a C-code by using G and Pos. For

(b, 20), we skip the first code of log n/2 bits by DPos, because the decoded

distance sum is 7. The next code is also skipped, where the distance sum is 13. The

distance sum up to the third code is 22, so we decode this final code one-by-one in

O(log n) time.

Access query. Since we group the code block G(Tj) by characters, the access of Tj[p]

requires the whole scan of G(Tj). We scan each character group in the same way as

the rank query. If we decode the final code of log n/2 bits one-by-one, the whole scan

would take O(σ log n) time. Instead, we use table H that returns the maximum

number, k, of C-codes such that di ≤ p', where p' is p minus the distances sum

before the final code. If the distances sum is equal to p', then Tj[p] is the current

character. Otherwise, we check the next character. The total scan time is O(σ + log n)

= O(log n) for σ ≤ log n.

Insert/delete queries. The insertion or deletion at position p are also similar to the

access query. In addition to scanning each character group, we update the final code

for each c which contains the first C-code of Tj[i] = c with i ≥ p. For an insertion of c,

we split the first C-code of Tj[i] = c with i = p into two C-codes of Tj[p] = c and

Σi 1=

k
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k

Σi 1=

k′
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Tj[i+1] = c. We increase other final C-codes by one. The deletion is done by deleting

the C-code of Tj[i] with i = p and decreasing other C-codes of Tj[i] with i > p. The

changes of C-codes might induce the changes of lengths of C-codes, hence we need to

check the old positions of the starting C-codes to scan and update at once.

For example, let us consider an insertion of b at position 19 (Figures 2 and 4). The

distance sums of Ga(Tj) are 8, 20, and 24. Hence, we find the second code that has the

distance sum exceeding 19 and the first C-code, C(2), with distance sum 20 > 19. We

increase C(2) to C(3). The distance sums of Gb(Tj) are 7, 13, 22. We find C(8), the first

C-code with distance sum 21 > 19 and split C(8) into C(6) of Tj[19] = b and C(3) of

Tj[22] = b. The update of Gc(Tj) is similar to that of Ga(Tj).

After an insertion or deletion of a character, we check whether |G(Tj)| is in the

range of log2 n to 4 log2 n bits. We need to split or merge the code blocks out of the

range. Since we assume G(Tj) is encoded or decoded in O(|Tj|) time, we spend O(log2

n) in worst case. From the following lemma, this O(log2 n) update time can be

amortized on log n insertion or deletion queries on Tj. Therefore, we can split or merge

code blocks in O(log n) amortized time.

Lemma 3.2. If the length, |G(Tj)|, of a code block is changed by log2 n bits, then

there are log n updating queries on Tj.

Proof. We first consider the case of inserting a character c at position i. For

character c, this insertion causes to add a code of c at position i and to decrease the

distance of the code of c at the next position of i. For the codes of other characters next

to i, we increase the distance values by one and the code lengths by one at most. In

the worst case, the total increasing length of the codes is σ + O(log log n) < O(log n).

The case of deleting a character makes O(log n) bits decreasing in the code lengths.

Hence, if |G(Tj)| is increased by log2 n bits, then there are at least log n insertions

of characters. The decreasing of |G(Tj)| is similar.

To complete our dynamic representation of texts, we will mention two issues of our

structure. One is the block allocation problem. If we allocate a code block by a fixed

chunk of 4 log2 n bits, we might waste quadruple space in worst case, because the

encoding of Tj could take only log2 n bits. This problem is solved by Mäkinen and

Navarro’s dynamic bit vector [Mäkinen and Navarro 2006] which introduces a sub-

block of log3/2 n bits and manages a code block as  sub-blocks to obtain o(1)

factor in the waste space. This scheme is also applied to the rank/select structures for

a log n-size alphabet [Gonzalez and Navarro 2008; Lee and Park 2007]. We omit the

details and refer to these versions.

The other issue is the change of log n, which causes the changes of the code block

log n

Figure 4. Example of an insertion to G(Tj).
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size and the table sizes. We simply rebuild the total structure when n becomes 2n or

n/2. The o(n) entries of the tables G, Pos, DPos, and H can be extended or contracted

by one bit in linear time. The total encoding or decoding time is also linear in the

length of text, |T|, and the auxiliary structures are built in O(n). 

4. OVER-BLOCK RANK/SELECT STRUCTURES

In the previous section we showed that the rank or select on Tj can be answered by

scanning G(Tj). To complete the answer of rank/select queries on T, we need over-

block structures which count the number of occurrences of a certain character in the

previous blocks of Tj. We denote by , the number of occurrences of character c in

Ti for 1 ≤ i ≤ m. Given a sequence of , we can employ two kinds of structures as the

over-block rank/select structures. One is the dynamic searchable partial sum

structure [Raman et al. 2001; Hon et al. 2003] and the other is the dynamic bit vector

with rank/select [Mäkinen and Navarro 2006].

The searchable partial sum structures store the sequence of  and answer two

queries: rank and select [Raman et al. 2001; Hon et al. 2003]. The rank query (c, j)

of the partial sum structures returns the sum of  with i < j, which is the number

of occurrences of c before Tj. The select query (c, k) returns the maximum j such that

≤ k. For example T = T1T2T3T4 and T1 = abac, T2 = babc, T3= ccaa, T4 =

bbca, the numbers of occurrences of characters are na = (2, 1, 2, 1), nb = (1, 2, 0, 2)

and nc = (1, 1, 2, 1). The rank of b before T3 is = 3 and the select of the 4-

th b is the maximum j such that ≤ 4, which is 3. The original partial sum

problem has only one sequence, but here we have a sequence for each character.

Our key observation is that we can simply build independent σ partial sum

structures, one for each character. Because |Tj| ≤ 4 log2 n, the  values can be

represented by a simple binary form of O(log log n) bits. Recall that the total number

of blocks, m, is O( ) for σ ≤ log n. The partial sum structures take a space linear

in the sequence for each character, and therefore the total size is σm· O(log log n) bits.

For σ ≤ log n, the total size is O( ) = o(n). The partial sum structures is constructed

in O(σ m) = o(n) time, too.

The log n-size alphabet enables us to amortize the cost of block split/merge on the

insertions or deletions on Tj. An insertion or deletion of a character c needs O(1)

update queries only on the sequence nc, and a block split or merge triggers total O(σ)

= O(log n) update queries, O(1) queries for each sequence nc. From Lemma 3.2, the

split or merge of Tj occurs only if there are log n insertions or deletions in Tj, so we

have amortized O(1) update queries for one split or merge.

In fact, the searchable partial sum problem is related to the rank/select on bit

vectors [Raman et al. 2001; Hon et al. 2003; Mäkinen and Navarro 2008]. In [Lee and

Park 2007], all sequences of nc are represented by a bit vector B and the over-block

rank/select queries are processed by the binary rank/select on B. The  values of

each sequence is unary-coded by a single 1 and following  0s. For the above

example, the sequence na = (2, 1, 2, 1) is represented by Ba = 1001010010. The

sequences nb and nc are represented by Bb = 101001100 and Bc = 101010010. B is the

concatenation of Ba, Bb, and Bc. The size of B is n + σ m = O(n) bits, but the

compressed bit vector B by Mäkinen and Navarro [Mäkinen and Navarro 2006; 2008]
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takes o(n) bits like the partial sum structures and provides worst-case O(log n) time

queries.

5. EXTENSIONS FOR A LARGE ALPHABET AND APPLICATIONS

In this section we extend our structure for a large alphabet with σ = O(ne) and e < 1,

and then apply the structure to the Burrows-Wheeler Transform (BWT) of texts. The

extension for a large alphabet employs k-ary wavelet trees [Ferragina et al. 2007] and

obtains O((1 + ) log n) time queries in nH0 + o(n log σ) bits. The application to

the BWT of texts immediately supports a dynamic compressed index for a collection

of texts by Chan et al. [Chan et al. 2004]. For an nHk compression of texts, some

results [Mäkinen and Navarro 2008; Ferragina et al. 2007] showed that the gap

encoding with binary wavelet trees compresses the BWT of texts in nHk + o(n log σ)

bits. Based on these results, our extension by k-ary wavelet trees can also achieve nHk

+ o(n log σ) bits compression with the BWT.

5.1 Wavelet Tree Extension

Given character c in a σ-size alphabet Σ, we regard c as l = 1 +  digits of a log n-

size alphabet Σ', i.e., c = c1c2 ... cl and  with = log n. Let Tj be the

concatenation of the j-th digit of T[i] for all i. The k-ary wavelet tree stores sequence

Tj at the j-th level, grouped by the first j−1 digits. Let  denote a subsequence of T j

such that the j-th digit of T[i] belongs to  iff T[i] has the same prefix s of j−1 digits.

The root of the tree contains T1 and each of its children contains  for . If a

node of the j-th level contains , then its children contain  for all . The

leaves of the tree contain Tl grouped by its l−1 prefix digits of T[i]. See Figure 5.

We maintain the k-ary wavelet tree implicitly. For each j-th level, we concatenate

 by the lexicographic order of s and encode this concatenation to the code blocks

of log2 n to 4 log2 n bits. The over-block rank/select structure is built for each j-th level.

We build an O(n + σ) bits vector Fj for marking the lengths of . By using Fj, we find

G( ) and branch to G( ) from G( ) at the j-th level. The total size of Fj is

O((1 + )n) bits.

From Ferragina et al.'s result [Ferragina et al. 2007], we can show that our

extension by the k-ary wavelet tree obtains total nH0(T ) + o(n log σ) bits for σ = O(ne)

with e < 1. By Lemma 3.1, the partition by code blocks does not introduce extra space

so that each  is encoded in (1 + o(1))| |H0( ) + O(| |) bits except the

overhead of O(log n log log n) bits for the starting characters of . There are O(σ)
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Figure 5. Example of a wavelet tree.
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nodes for all , so the total overhead is O(σ log n log log n) and it becomes o(n) for

σ = O(ne). The sum of | |H0( ) for all  is total nH0 bits [Ferragina et al. 2007].

The additional dynamic structures take total o(n log σ) bits.

For log σ-bits character c = c1c2 ... cl, the rank of c is processed by the rank of cj on

each Tj. The rank of c1 on the first level gives the next query position for the rank on

c2, i.e., the number of characters with the first digit c1 and the second digit c2. The

rank query is processed from the root to a leaf, and the select query is bottom up

[Ferragina et al. 2007]. The access and update of T[i] use the steps of the rank [Lee

and Park 2007].

5.2 Application to BWT

The BWT of T, Tbwt, is a permutation of T made from the preceding characters of the

sorted suffixes of T. In the BWT of T, there are groups of the characters that share 

the same context Σk, and therefore there is a partition of Tbwt = ...

with  such that nHk(T ) = | |H0( ) [Manzini 2001]. In other words,

an H0 compressor which keeps the local entropy H0( ) is an Hk compressor of T.

Our representation for a log n-size alphabet can be an Hk compressor. In fact, the

gap encoding methods are widely used for static nHk compressions of full text indices

[Grossi et al. 2004; Mäkinen and Navarro 2008; Sadakane 2003]. We can also obtain

a dynamic structure of nHk(T ) + o(n log σ) + σ
k+1 log log n bits. For any partition of

T
bwt, |G( )| = (1 + o(1))| |H0( ) +O(| |) by Lemma 3.1. The encodings

of the starting characters of  have σ log log n bits overhead, and the total sum

becomes σk+1 log log n. For k ≤ (α log
σ
n) − 1 and 0 < α < 1, the size of our structure

can be nHk(T ) + o(n log σ) bits.

For our extension by the k-ary wavelet tree, we follow Mäkinen and Navarro's

result [Mäkinen and Navarro 2008] which shows that the binary wavelet tree with

Raman et al.'s encoding [Raman et al. 2002] preserves the local entropy of .

Because we employ the k-ary wavelet tree with the gap encoding, there are some

differences in the details, but the final result is the same.

We want to show that given any partition of T = T1T2 ... Tt, the k-ary wavelet tree

with the gap encoding compresses Tj in space of |Tj|H0(Tj) + o(|Tj|log σ) +

O(σ log n log log n) bits. Like the binary wavelet tree case, the decomposition of Tj can

be regarded as an independent k-ary wavelet tree of Tj plus overhead. The k-ary

wavelet tree enables Tj to be encoded in |Tj|H0(Tj) + o(|Tj| log σ) bits. By comparing

the implicit tree with the decomposition of Tj, the overhead is the encoding of the

starting characters at each node, which is O(log n log log n). The number of the nodes

in the wavelet tree of Tj is O(σ), so the total overhead is O(σ log n log log n). Hence,

the total size of the encoding of any partition of Tbwt is bounded by nHk(T) + o(n log σ)

+ σ k+1 log n log log n bits. For k ≤ (α log
σ
n) − 1 and 0 < α < 1, this can be nHk(T ) +

o(n log σ) bits.

6. CONCLUSION

We have presented a dynamic and compressed representation of texts, which provides

retrieving queries of rank/select/access and updating queries of insert/delete. This is

an improvement upon our previous result [Lee and Park 2007] by compressing a text
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in its empirical entropy bound. Comparing with [González and Navarro 2008], our

representation uses rather simple techniques to obtain a compressed space and fast

rank/select time.
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