
Journal of Computing Science and Engineering, Vol. 3, No. 1, March 2009, Pages 27-58.

Transformation of Continuous Aggregation Join 

Queries over Data Streams

Tri Minh Tran and Byung Suk Lee

Department of Computer Science, University of Vermont

Burlington VT 05405, USA

{ttran, bslee}@cems.uvm.edu

Received 2 October 2008; Accepted 11 February 2009

Aggregation join queries are an important class of queries over data streams. These queries
involve both join and aggregation operations, with window-based joins followed by an
aggregation on the join output. All existing research address join query optimization and
aggregation query optimization as separate problems. We observe that, by putting them within
the same scope of query optimization, more efficient query execution plans are possible through
more versatile query transformations. The enabling idea is to perform aggregation before join
so that the join execution time may be reduced. There has been some research done on such
query transformations in relational databases, but none has been done in data streams. Doing
it in data streams brings new challenges due to the incremental and continuous arrival of
tuples. These challenges are addressed in this paper. Specifically, we first present a query
processing model geared to facilitate query transformations and propose a query transformation
rule specialized to work with streams. The rule is simple and yet covers all possible cases of
transformation. Then we present a generic query processing algorithm that works with all
alternative query execution plans possible with the transformation, and develop the cost
formulas of the query execution plans. Based on the processing algorithm, we validate the rule
theoretically by proving the equivalence of query execution plans. Finally, through extensive
experiments, we validate the cost formulas and study the performances of alternative query
execution plans. 

Categories and Subject Descriptors: H.2.4 [Database Management]: Systems−Query processing

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Aggregation Join Query, Data stream, Query Transformation

1. INTRODUCTION 

Aggregation join queries are common in continuous queries over data streams.

Queries of this type involve both join operations and aggregation operations (the

Copyright(c)2009 by The Korean Institute of Information Scientists and Engineers (KIISE).

Permission to make digital or hard copies of part or all of this work for personal or classroom use

is granted without fee provided that copies are not made or distributed for profit or commercial

advantage and that copies bear this notice and the full citation on the first page. Permission to

post author-prepared versions of the work on author's personal web pages or on the noncommercial

servers of their employer is granted without fee provided that the KIISE citation and notice of the

copyright are included. Copyrights for components of this work owned by authors other than

KIISE must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to

post on servers, or to redistribute to lists, requires an explicit prior permission and/or a fee.

Request permission to republish from: JCSE Editorial Office, KIISE. FAX +82 2 521 1352 or email

office@kiise.org. The Office must receive a signed hard copy of the Copyright form.



Transformation of Continuous Aggregation Join Queries over Data Streams 28

Journal of Computing Science and Engineering, Vol. 3, No. 1, March 2009

aggregation may be a grouped aggregation.) Aggregation join queries require windows

on the join inputs because processing join over unbounded streams requires

unbounded memory, which is impractical. A window, which restricts the number of

tuples processed, is a common technique proposed in much existing research [Kang et

al. 2003; Golab and Ozsu 2003; Das et al. 2003; Li et al. 2005; Ayad and Naughton

2004; Arasu and Widom 2004; Arasu and Manku 2004; Ding and Rundensteiner

2004; Ghanem et al. 2007; Babcock et al. 2002]. 

Window-based aggregation join queries (called simply “aggregation join queries”

from now on) are needed in various data stream applications. For example, an online

auction system -which has continuous streams of auction items registered, members

(i.e., account holders) signing in, and bids made − may be monitored to build statistics

of auction activities. In another example, a network traffic management application

[Babcock et al. 2002], a network administrator may want to monitor packet data flow

(i.e., number of packets transmitted) through links between different networks.

Below, let us take a look at an example query of the online auction application. 

Example 1 In an online auction application, we may pose a continuous query

running on two data streams Bid(ts, auctionID, bidderID, bidPrice) and Auction (ts,

auctionID, sellerID, startPrice) (based on schema used by Babu et al. [Babu et al.

2003]) and one relation Person(personID, name, state); where the meanings of

attributes are self-explanatory. Users may want to know the total number of bids

made in the last one hour for each auction created up to now by a seller from

Vermont. In this case, the query involves a three-way join (involving two stream

windows and one relation) and a grouped aggregation, grouped by auctionID. The

query can be expressed as an aggregation join query as follows: 

SELECT A.auctionID, COUNT(B.*) 

FROM Auction AS A [WINDOW UNTIL NOW], Bid AS B [WINDOW 1 HOUR],

FROM Person AS P 

WHERE A.auctionID = B.auctionID AND A.sellerID = P.personID AND P.state = “VT”

GROUP BY A.auctionID;

Naturally, efficient processing of these aggregation join queries is very important.

One premise in this paper is that, the queries can be processed more efficiently if the

optimizations of join and aggregation are handled as one problem. Most of the existing

research addresses them as separate problems: for example, joins in [Das et al. 2003;

Golab and Ozsu 2003; Kang et al. 2003; Viglas et al. 2003; Urhan and Franklin 2000]

and aggregations in [Dobra et al. 2002; Gehrke et al. 2001; Gilbert et al. 2001; Guha

and Koudas 2002; Vitter and Wang 1999]. Two other existing studies [Dobra et al.

2002; Jiang et al. 2006] address the problem of efficiently processing aggregation join

queries as one, but not as an optimization problem per se. Furthermore, their

methods use sketching techniques [Dobra et al. 2002] and discrete cosine transform

[Jiang et al. 2006], respectively; thus, they cannot be applied to our problem since

they are not window-based and cannot handle grouped aggregations. 

The premise mentioned above opens a door to generating a heuristically more

efficient query execution plan (QEP) through query transformations, which is the



29 Tri Minh Tran and Byung Suk Lee

Journal of Computing Science and Engineering, Vol. 3, No. 1, March 2009

focus of this paper. Query transformation produces alternative query execution plans

(QEPs) for the same query so that the query optimizer may choose the QEP whose

estimated execution cost is the lowest. In the initial QEP of an aggregation join query,

joins are performed first and then aggregation follows. The key idea of query

transformation adopted in this paper is to perform an aggregation before join − in

other words, push aggregation down to a join input in a query execution tree. This

transformation may reduce the join input cardinality and thus result in a more

efficient QEP, although this is not guaranteed. In this paper we call the initial QEP

a late aggregation plan (LAP) and the transformed QEP an early aggregation plan

(EAP), and call the pushed-down aggregation operator an early aggregation operator.1 

There are such query transformation mechanisms proposed in the relational database

[Chaudhuri and Shim 1994; Yan and Larson 1995]. These mechanisms, however, are

not applicable to data streams due to the streaming nature of data that makes stream

queries different from database queries. First, tuples arrive continuously in data

streams, hence the query output must be updated continuously as well. Second, in

many cases the arriving tuples must be processed on-line, which requires that the

query must be processed incrementally as soon as tuples arrive. 

In order to develop a working transformation mechanism for data streams, we

introduce two key stream operators for query processing, called the aggregation set

update (AS update) and the aggregation set join (AS join), and the notion of a virtual

window on the join output. The AS update operator is used to update aggregate

values incrementally as new tuples are added to the input window and old tuples are

removed from the window. The AS join operator is used to perform a join between a

new tuple arriving at one stream and the output of an early aggregation operator

(called an aggregation set) at another stream. Note its distinction from a window join,

which uses a window of tuples instead of an aggregation set. To our knowledge, the

AS join operator is a new operator introduced for the first time through this paper.

The virtual window is a notion for enabling the AS update operation on the join

output stream which becomes an input to the subsequent aggregation operator. Note

that the query has no specification of a window on the join output, while a window

is needed on the aggregation input.

In this paper we first formalize the notions of the aggregation set (AS) and the two

associated operators, AS update and AS join, and the notion of the virtual window.

Then, we propose a query transformation rule based on the approaches mentioned

above, that is, supporting AS update and AS join operators and retaining a late

aggregation operator. The rule is simple and yet general enough to be applicable to

any input streams. Then we present a generic algorithm for executing all alternative

QEPs (i.e., LAP and EAPs). Based on the algorithm, we validate the rule theoretically

by proving the equivalence of LAP and EAP. Specifically, we use algebraic expressions

to represent the stream operators and prove the equivalence of LAP and EAP by

induction for each data item. We also validate the proposed transformation rule

1Join ordering is another important issue in query transformation. However, the issue of join
ordering is independent of the issue of early aggregation, and is beyond the scope of this
paper.



Transformation of Continuous Aggregation Join Queries over Data Streams 30

Journal of Computing Science and Engineering, Vol. 3, No. 1, March 2009

empirically. For this, we develop the cost functions for estimating the execution times

of QEPs, and implement the algorithm in an operational prototype. We then compare

the execution times of alternative QEPs estimated using the cost functions with those

measured using the prototype. 

To our knowledge, this is the first work done to address the query transformation

on an aggregation join query over data streams. Main contributions of this paper

include (1) proposing a formal query processing model that is suitable for a stream

aggregation join query, (2) developing a query transformation rule that is simple and

yet applicable to any input streams, (3) validating the rule through an inductive proof

of the equivalence of alternative QEPs, (4) building analytical cost functions to

estimate the execution time of a QEP, and (5) conducting extensive experiments to

validate the cost functions and to examine the efficiencies of alternative QEPs. 

This paper contains the result of a comprehensive study extended from our earlier

work [Tran and Lee 2007]. The extensions made from the earlier work include

validating the query transformation rule formally through the proof of the algebraic

equivalence of an EAP and the corresponding LAP (Section 6.2), developing the cost

functions for estimating the execution times of QEPs resulting from the query

transformation (Section 6.3 and Section 7.1), and conducting more comprehensive

experiments, including new experiments for validating the cost functions (using hash

joins as well as nested loop joins2 and using three-way as well as two-way joins)

(Section 7.2). Besides, the presentation has been extended in several places including

the related work section (Section 2) and the query processing model (Section 4).

The rest of the paper is organized as follows. Section 2 discusses related work,

Section 3 provides some preliminary concepts, Section 4 presents the query processing

model and the key operators, Section 5 proposes the query transformation rule,

Section 6 describes the query processing algorithm and the cost functions and shows

the equivalence of query transformations, Section 7 evaluates the cost functions and

the efficiencies of QEPs through experiments, and Section 8 concludes the paper. 

2. RELATED WORK 

We find related work in two areas: (1) processing join queries and aggregation queries

in data streams and (2) handling early aggregations databases. 

2.1 Join Queries and Aggregation Queries on Data Streams 

As far as we know, all of the existing data stream query processing systems − such

as Aurora [Abadi et al. 2003], STREAM [Motwani et al. 2003], TelegraphCQ

[Chandrasekaran et al. 2003], NiagaraCQ [Chen et al. 2000], Stream Mill [Bai et al.

2006], Nile [Hammad et al. 2004], Tribeca [Sullivan 1996] and GigaScope [Cranor et

al. 2003]. − optimize aggregation join queries by considering the join and aggregation

separately. In Aurora [Abadi et al. 2003] and STREAM [Motwani et al. 2003], query

optimizers use query transformations by reordering filter operators (i.e., selection) and

join operators in a QEP to generate equivalent QEPs. Their reordering, however, is

2The results from the nested loop joins are omitted in this paper due to space limit. The
results can be found in [Tran and Lee 2007]. 



31 Tri Minh Tran and Byung Suk Lee

Journal of Computing Science and Engineering, Vol. 3, No. 1, March 2009

not applicable between a join operator and an aggregation operator. In the other

systems, query optimizers do not even use query transformations. Thus, to our

knowledge, our work is the first to allow for reordering the join and aggregation

operators. 

Aside from these comprehensive data stream management systems, join processing

and aggregation processing have been researched quite extensively. A large number

of studies focus on window join processing [Kang et al. 2003; Golab and Ozsu 2003;

Viglas et al. 2003; Das et al. 2003; Srivastava and Widom 2004; Ding and Rundensteiner

2004; Hammad et al. 2003]. We briefly discuss these join techniques next. 

In [Kang et al. 2003], Kang et al. propose sliding window two-way join algorithms

and develop a unit-time cost model for evaluating the performances of their

algorithms. The unit-time cost model is used to estimate the execution time to process

tuples arriving in a unit time. In [Golab and Ozsu 2003], Golab et al. extend Kang

et al.’s two-way window join algorithms to multi-way window join algorithms, and

then propose join ordering heuristics to minimize the unit-time cost. A multi-way

window join called the MJoin is also considered in [Viglas et al. 2003] by Viglas et al.

based on the symmetric hash join. An MJoin assigns a join order for each input

stream and generates join output without maintaining intermediate results. In

contrast to MJoin, the XJoin proposed in [Urhan and Franklin 2000] is a multi-way

join executed in a tree of two-way joins and maintains a fully-materialized join results

for each intermediate two-way join. 

For window aggregation processing, Li et al. [Li et al. 2005] propose a generic

window concept and present an efficient window aggregation technique that computes

the aggregate values in one pass. The key idea is to assign to each tuple a range of

the identifiers of windows to which it belongs. Zhang et al. [Zhang et al. 2005] address

the problem of processing multiple aggregation queries that differ only in grouping

attributes. Their approach is to compute and maintain fine-granularity aggregations

and use them to share computing resources among multiple queries. All this research

is concerned only with an aggregation operation on a single input stream. There are

other existing aggregation techniques [Considine et al. 2004; Manjhi et al. 2005;

Tatbul and Zdonik 2006; Babcock et al. 2004; Vitter and Wang 1999; Gilbert et al.

2001] as well, but they are not window-based. 

As mentioned in the Introduction, while there have been many efforts to address

join query processing and aggregation query processing as separate problems, there

has been very little research addressing them in combination as one optimization

problem. There are two existing studies [Dobra et al. 2002; Jiang et al. 2006] done to

address the problem of processing the same type of query as ours. Their approaches,

however, are to use approximation techniques using sketching [Dobra et al. 2002] and

discrete cosine transform [Jiang et al. 2006]. Specifically, Dobra et al. [Dobra et al.

2002] use random variables to construct the sketch of each stream and approximate the

aggregate value as an expected value based on the random variables, and Jiang et al.

[Jiang et al. 2006] use discrete cosine transform to represent the distribution of the join

attribute value in each stream and use it to estimate the join output size. These

techniques are not applicable to our problem which handles window-based queries and

grouped aggregations. In summary, to the best of our knowledge our paper is the first



Transformation of Continuous Aggregation Join Queries over Data Streams 32

Journal of Computing Science and Engineering, Vol. 3, No. 1, March 2009

to address the problem of optimizing aggregation join queries as one integral problem. 

2.2 Early Aggregation in Relational Queries 

The early aggregation idea is employed for database queries in the work by Chaudhuri

and Shim [Chaudhuri and Shim, 1994] and by Yan and Larson [Yan and Larson,

1994; Yan and Larson, 1995]. In [Chaudhuri and Shim, 1994] the authors present

query transformation rules for three cases. These cases are different in terms of the

relation to which each of the aggregation, grouping, and join attributes belong. The

second case subsumes the first case, and the third case subsumes the second case.

Specifically, the first case specifies that the late aggregation operator is pushed down

before join if the join is a foreign-key join. The second case specifies that an early

aggregation operator can be inserted before join if both grouping attributes and

aggregation attributes are in the same relation. In the third case, which is the most

general, a new operator called the aggregate join is introduced. This operator is used

to perform a join between one relation and the output of an early aggregation on the

other relation. In their work, query transformation rules are restricted to apply to

only the class of left-deep join trees. 

In [Yan and Larson 1994; Yan and Larson 1995] the authors present more

comprehensive transformation rules that apply to any class of join trees. Their rules

are also proposed for different cases depending on which relation the aggregation,

grouping, and join attributes belong to and cover all the cases considered in [Chaudhuri

and Shim 1994]. In addition, instead of introducing a new operator like the aggregate

join proposed in [Chaudhuri and Shim 1994], they use a “query re-writing” technique

to generate an EAP. This re-writing technique involves inserting one or more early

aggregation operators and modifying the aggregation functions specified in late

aggregation operators. 

The results of their work are not directly applicable to our problem which requires

dealing with unbounded sequences of tuples in continuous data streams as opposed

Table I. Notations used in this paper. 

Notation Meaning 

Si(TSi, Xi, Gi, Ji, Ai) A stream Si with a list of attributes, where TSi is a timestamp

attribute, Gi is a grouping attribute, Ji is a join attribute, Ai is an

aggregation attribute, and Xi is the set of remaining attributes. 

W[T](t) A window of size T at time t. 

W+(t1, t2) A window increment, i.e., the set of tuples added to the window during

the time interval [t1, t2]. 

W −(t1, t2) A window decrement, i.e., the set of tuples removed from the window

during the time interval [t1, t2]. 

An aggregation operator with the list of grouping attributes G and an

aggregation function F on the aggregation attribute A. 

An aggregation set update operator with the list of grouping attributes

G and an aggregation function F on the aggregation attribute A. 

A one-way AS join from Si to ASj via join attributes Si. Ji and ASj. Jj. 



33 Tri Minh Tran and Byung Suk Lee

Journal of Computing Science and Engineering, Vol. 3, No. 1, March 2009

to bounded sets of tuples in relations. Moreover, a new transformation rule is needed

under the query processing model geared for data stream processing. 

3. PRELIMINARIES 

In this section, we present some key notations and concepts needed to understand the

rest of the paper. 

Table I summarizes the notations used in this paper. 

Data streams. 

We consider a data stream S, of an ordered sequence of tuples. Each tuple in the

stream has the schema S(TS, X1, X2,..., Xd), where TS is a timestamp attribute and

X1, X2,..., Xd are non-timestamp attributes. We denote a tuple of the above schema as

s(ts, x1, x2,..., xd), where ts is the value of TS and xi is the value of Xi for each i=1,

2,..., d. (We use an upper-case letter to denote an attribute and a lowercase letter to

denote the value of an attribute.) We assume that the tuples arrive in the order of

timestamp; handling out-of-order tuples is beyond the scope of this paper. 

Windows. 

Definition 1 (Window) A window W of size T, W [T], on stream S at time t is defined

as a set of tuples whose timestamps are in the range of [t −T, t). That is, W [T](t)=

{s | t −T ≤ s.ts < t}.

 

Definition 2 (Window increments and decrements) Given a window W[T](t1), a

window increment, denoted as W+(t1, t2), is the set of tuples added to the window

during a time interval [t1, t2], i.e., W+(t1, t2) = {s | t1≤ s.ts < t2}. A window decrement,

W−(t1, t2), is the set of tuples removed from the window during the same time interval,

i.e., W −(t1, t2) = {s | t1− T ≤ s.ts < t2− T}. 

Given a window W[T](t1) at time t1, and a window increment W+(t1, t2) and

decrement W−(t1, t2) between t1 and t2, the window W[T](t2) at time t2 is computed as: 

W[T](t2) = W[T](t1)∪W+(t1, t2) − W−(t1, t2)

 

Given the above definitions of window increments and decrements, three types of

windows − sliding window, tumbling window, and landmark window [Li et al. 2005]

− are supported in our processing model. Figure 1 illustrates the three window types,

with their corresponding increments and decrements. The tumbling window and the

landmark window are special cases of the sliding window, and therefore we consider

only the sliding window in this paper. 

Window joins. 

A two-way window join [Kang et al. 2003] between two streams S1 and S2 with

windows W1 and W2, respectively, is computed as follows. For each new tuple s1 in a

window increment of S1, s1 is inserted into W1 and any expired tuples are removed

from W1. Then, W2 is probed for matching tuples of s1 and matching tuples are



Transformation of Continuous Aggregation Join Queries over Data Streams 34

Journal of Computing Science and Engineering, Vol. 3, No. 1, March 2009

appended to the join output stream. The computation is symmetric for each new tuple

s2 in a window increment of S2. Generalized from this, in a multi-way join among

m (m > 2) streams, for each new tuple sk in a window increment of Sk, matching

tuples are found from the other m − 1 windows and then appended to the output

stream. We assume that the join computation is fast enough to finish before the other

m − 1 windows are updated. 

4. QUERY PROCESSING MODEL 

In this section we present a model for continuous and incremental processing of

aggregation join queries. Key components of the model include the aggregation set, the

aggregation set update (AS update) operator, the aggregation set join (AS join) operator,

and the virtual window. This model provides a basis for the query transformation rule

and the query processing algorithm presented in Section 5 and Section 6 respectively.

The concepts of aggregation set and AS update operator are the same as the

concepts of window aggregate and group-by operator mentioned in [Ghanem et al.

2007]. These concepts are refined and presented formally in this paper using the

notions of window increment and window decrement. The AS join is a combination of

the window join defined in Section 3 and the aggregate join proposed for database

aggregation join queries in [Chaudhuri and Shim 1994]. 

Aggregation set. 

Aggregation of the tuples in a window produces a set of tuples, one tuple for each

group. We call this set of tuples an aggregation set (AS). 

Definition 3 (Aggregation set) Consider a set of tuples in a window at time t,

denoted as W[T](t). Additionally, consider an aggregation operator, denoted as

(W[T](t1)) where G ≡ (G1,...,Gp) is a list of grouping attributes, A is an

aggregation attribute, and F is an aggregation function on A. Then, an aggregation set

is defined as a set of tuples {(g1,..., gp, v)} where gi is a value of Gi (i = 1, 2,..., p) and

v is an aggregate value computed as F(A) for the group (g1,..., gp) over W[T](t). We

denote the schema of an aggregation set as AS(G, F(A)); here, F(A) denotes an

attribute whose value is v. 

Aggregation set update. 

An aggregation set update operator is used to update the AS as the window content

changes. This is done incrementally without re-evaluating the whole window content.

Figure 1. Windows of different types (t1 < t2). 



35 Tri Minh Tran and Byung Suk Lee

Journal of Computing Science and Engineering, Vol. 3, No. 1, March 2009

Definition 4 (Aggregation set update) Consider an aggregation set

AS ≡ (W[T](t1)) at time t1, a window increment W+(t1, t2) and a window

decrement W−(t1, t2) at time t2 (> t1). Then, an AS update operation, denoted by

(AS, W+(t1, t2), W−(t1, t2)), returns an updated aggregation set AS' resulting

from the following updates on AS: 

• For each tuple s in W+(t1, t2), if there exists a tuple l in AS such that l.G = s.G (i.e.,

s belongs to a group in AS) then update the aggregate value l.F(A) as follows.3

Otherwise, insert a new tuple l' whose l'.G = s.G and whose l'.F(A) is as follows. 

• For each tuple r in W−(t1, t2), find a tuple l in AS such that l.G = r.G (i.e., r belongs

to a group in AS), and then update the aggregate value l.F(A) as follows.

The above definition shows that from the above definition, updating an aggregate

value l.F(A) for each tuple r ∈ W−(t1, t2) requires re-evaluating the whole window

only if F ≡ MIN or F ≡ MAX and r.A = l.F(A). Note that even this situation happens

only with a sliding window and not with a tumbling or a landmark window. In the

case of a tumbling window, a window decrement is discarded and a new aggregation

set is generated using the new window increment only. In the case of a landmark

window, there is no window decrement. 

Aggregation set join. 

We first present the coalescing property [Chaudhuri and Shim 1994] of an aggregation

function. This property is used in Definition 6 to compute the aggregate value of each

output tuple generated from the aggregation set join. 

3
F ≡ AVG is computed by maintaining both COUNT and SUM. 



Transformation of Continuous Aggregation Join Queries over Data Streams 36

Journal of Computing Science and Engineering, Vol. 3, No. 1, March 2009

Definition 5 (Coalescing property) Consider an aggregation function F on an

attribute A. The aggregate of ctuples that have the same value, a, of A is computed

using the following function f(c, a) depending on the type of F. 

 

An AS join handles a join between a stream S and an aggregation set AS and

computes the aggregate value of a join output tuple using the coalescing property.

Definition 6 (One-way aggregation set join) Consider two streams S1 and S2 with

their window W1[T](t1) and W2[T](t1), respectively, at time t1. Additionally, consider

the window increment W1

+(t1, t2) and decrement W1

−(t1, t2) of S1 at time t2 (> t1). Now,

given an aggregation F(A) specified in the query, let the aggregation set AS2(t1) on

stream S2 be computed as follows depending on whether A is in the schema of S2 or

not. 

Then, a one-way AS join from S1 to AS2 via join attributes S1.J1 and AS2.J2, denoted

as  AS2, is computed as follows. 

For each tuple s1 in W1

+(t1, t2) and for each tuple r1 in W1

−(t1, t2), 

1. Find matching tuples from AS2(t1). (Denote each tuple as l.) 

2. Return a sequence of tuples where each tuple (u) is made of s1 (or r1) and each

l and has the value of F(A) set as follows. 

where is the value of s1.A(or r1.A), c is the number of tuples aggregated to l in AS2,

and f is the function in the definition of the coalescing property (Definition 5). 

An extension to a multi-way AS join is straightforward. That is, a one-way AS join

is repeated from each stream Sk, (k ∈ {1, 2, ..., m}) to the aggregation sets ASi on the

other streams Si, i ≠ k.

Example 2 Given the query in Example 1, a one-way AS join between the stream

Auction A and the aggregation set AS2 on Bid B shown in Figure 2: 



37 Tri Minh Tran and Byung Suk Lee

Journal of Computing Science and Engineering, Vol. 3, No. 1, March 2009

where AS2
≡ (WB(t)). AS2 is then a set of tuples, {(B.auctionID, c)}.

For each tuple (ts,A.auctionID,...) in WA

+, the one-way AS join from A to AS2 produces

a sequence of output tuples u(ts,A.auctionID,B.auctionID,c) where A.auctionID

= B.auctionID and the aggregate value equals c (= f(c, a) in Definition 5). Similar steps

are taken for each tuple in WA

−. 

Virtual window. 

As mentioned in the definitions of the aggregation set and the aggregation set update

(Definition 3 and Definition 4), an aggregation set is computed from a set of tuples in

a window and is updated with the tuples in the window increment and the window

decrement. However, there is no query window specified on the aggregation input

which is a join output in an aggregation join query. We thus introduce the notion of

a virtual window on the join output. The computation of virtual window extent

depends on whether the join is a window join or an AS join, and is defined as shown

below based on the definitions of the window join (Section 3) or the AS join (Definition

6 in this section). 

Definition 7 (Virtual window on a window join output) Consider an aggregation

join query on m input streams S1, S2,..., Sm with the corresponding windows W1[T](t1),...,

Wm[T](t1) at time t1. Let Wk

+(t1, t2), Wk

−(t1, t2) be respectively the window increment

and decrement on stream Sk during a time interval [t1, t2], and let Sout be the m-way

window join output stream. Then, the virtual window, Wout[T](t1), on Sout is defined as

and the virtual window increment and decrement (respectively due to the window

increment and window decrement on the stream Sk) are computed as follows. 

Figure 2. An example one-way AS join.



Transformation of Continuous Aggregation Join Queries over Data Streams 38

Journal of Computing Science and Engineering, Vol. 3, No. 1, March 2009

Definition 8 (Virtual window on an AS join output) Similar to Definition 7, the

virtual window on an AS join output is defined as 

and the corresponding virtual window increment and decrement are computed as

follows.

Given the definitions above, our query processing model handles an aggregation join

query as follows. Windows (see Definition 1) are used on the join inputs, and the

aggregation set update operator (see Definition 4) is used on the virtual window of the

join output. Each window is updated incrementally with the tuples in the window

increment and the window decrement, respectively. The query output is an aggregation

set (see Definition 3), which is updated by the AS update operator on a virtual

window for each tuple in the window increment and the window decrement,

respectively. In Section 6 we present a query processing algorithm based on this

model. 

5. QUERY TRANSFORMATION RULE 

In this section, we propose a query transformation rule developed for aggregation join

queries on data streams. As mentioned in the Introduction, in order to make the

query transformation rule work on data streams, the aggregation sets in a QEP

should be updated incrementally and continuously, both before and after the

transformation. To handle this problem, we use the AS update and AS join operators

introduced in Section 4. Precisely, only the AS update operator is needed in an LAP

and both operators are needed in an EAP. 

There is a side effect of using the AS join operator. As mentioned earlier, we

consider a window-based join in this paper. A window join is processed as multiple

one-way window joins − that is, each new tuple arriving in one stream is matched

with tuples in the windows of the other streams. By performing early aggregations in

an EAP, one or more of these one-way window joins in an LAP is replaced by one-way

AS joins in an EAP. This results in different join output schemas depending on which

window joins are replaced because the join output schema of a one-way AS join is

different from that of a window join or another one-way AS join. To handle this side

effect, in the transformed plan we always keep a late aggregation (LA) operator in its

original position. This LA operator guarantees that the schema of the aggregation join

query output is the same even though the schemas of one-way join outputs are

different. This guarantee is due to the fact that two different tuples with the same



39 Tri Minh Tran and Byung Suk Lee

Journal of Computing Science and Engineering, Vol. 3, No. 1, March 2009

grouping attribute value are put into the same group. 

Example 3 In Example 2, for each tuple (ts, A.auctionID, ...) in stream A, the one-

way AS join from A to AS2 produces a sequence of output tuples u with the schema

(ts,A.auctionID, B.auctionID, COUNT(B.*)). Continuing with this example, for each

tuple (ts, B.auctionID, ...) in stream B, the window join from B to WA produces a

sequence of output tuples v with the schema (ts, A.auctionID, B.auctionID, ...). The

schema of u is different from that of v. By retaining the LA operator on the join

output, two tuples u and v that have the same A.auctionID are put into the same

group and the query output always has the schema ASout(A.auctionID, COUNT(B.*)).

We now summarize the query transformation rule. This rule specifies how to

construct an early aggregation operator which is specified in two parts, the grouping

attributes and the aggregation functions. These two parts are determined based on

the composition of the attributes of the input stream on which the early aggregation

operator is placed. 

Rule 1 (Query transformation rule) Given an LAP of an aggregation join query,

an equivalent EAP is obtained by placing one or more early aggregation (EA)

operators on any of the input streams of the LAP. Once placed on a certain input

stream, the operator generates an AS, and thus an AS join to the AS is used instead

of the window join to the input stream window. For those EA operators placed, their

grouping attributes and aggregation functions are determined as follows: 

● Grouping attributes in an EA operator: If the EA operator is placed on a

stream that has some or all of the grouping attributes in the query, then use these

and the join attributes as the grouping attributes of the EA operator. Otherwise, use

only the join attributes as the grouping attributes of the EA operator. 
● Aggregation functions in an EA operator: If the EA operator is placed on a

stream that has all the aggregation attributes in the query, then use the aggregation

function in the query as the aggregation function of the EA operator. If the stream

has only some (not all) aggregation attributes in the query, then use both the

aggregation function in the query and COUNT(*) as the aggregation function of the

EA operator. Otherwise, use only COUNT(*) as the aggregation function of the EA

operator. 

In the transformation rule, an EA operator may be placed on any of the input

streams, thus, given a LAP with m input streams, there are 2m − 1 possible equivalent

EAPs. Determining the input streams on which to place EA operators is based on the

resulting EAPs’ execution times as estimated using cost functions (see Section 6.3).

Figure 3 illustrates transformations of an aggregation join query with two input

streams, obtained by applying the rule. It shows all four possible QEPs when the

aggregation attributes are split into two streams. In Figure 3(b), an EA operator is

placed on S1. By the transformation rule, the grouping attributes of the EA operator

are G1 (grouping attribute of the query) and J1 (join attribute) and the aggregation

functions of the EA operator are F1(A1) which is the aggregation function of the query



Transformation of Continuous Aggregation Join Queries over Data Streams 40

Journal of Computing Science and Engineering, Vol. 3, No. 1, March 2009

and COUNT(
*
). The EA operator includes these two aggregation functions because

the input stream S1 contains some aggregation attributes of the query. In Figure 3(c),

an EA operator placed on S2 is constructed similarly to the EA operator placed on S1.

Note that in these two figures, since the EA operator is placed on only one input

stream, a one-way AS join is used (instead of a one-way window join) between an

input stream and an AS. In Figure 3(d), two EA operators are placed on both input

streams and a two-way AS join is used instead of a two-way window join.

Figure 3. Transformations of aggregation (two-way) join QEPs on data streams. (The aggrega-

tion attributes are split into two streams.) 



41 Tri Minh Tran and Byung Suk Lee

Journal of Computing Science and Engineering, Vol. 3, No. 1, March 2009

With the window join and AS join in place, the four QEPs in Figure 3 are

equivalent. The following example illustrates the equivalence of two QEPs shown in

Figures 3a and 3c. (We will show the equivalence of the transformed QEPs algebraically

in Section 6.2.) 

Example 4 (LAP vs. EAP) Consider the QEPs shown in Figures 3a and 3c, and

assume that both aggregation function F1 and F2 are SUM. Then, the query output

ASout is updated in each QEP as follows: 

In LAP (Figure 3a), a window join is performed from S1 to W2. Assume that, for

each tuple s1(ts1, x1, g1, j1, a1) ∈ W1

+, the tuple matches c tuples, {s2(ts2i, x2i, g2i, j2, a2),

i = 1, 2, ..., c} where s2.j2 = s1.j1, in W2. Then, the window join generates c output

tuples, {u(ts1, x1, g1, j1, a1, ts2i, x2i, g2i, j2, a2i)|i = 1, 2, ..., c, j2 = j1}. Further assume that,

among these c output tuples, cg tuples have the same value, g2, for g2i, and hence the

same value, (g1, g2), for (g1, g2i). Then, for a tuple in AS(G1, G2, SUM(A1), SUM(A2))

whose value of (G1, G2) equals (g1, g2), the value of SUM(A1) is increased by a1 * cg and

the value of SUM(A2) is increased by v2 = Σ a2i, i = 1, 2, ..., cg. 

In EAP (Figure 3c), an AS join is performed from S1 to AS2. Assume that, for each

tuple s1(ts1, x1, g1, j1, a1), it matches one tuple, l2(g2, j2, v2, cg) where j2 = j1 and Σ a2i,

i = 1, 2, ..., cg, in AS2(G2, J2, SUM(A2), COUNT(*)). Then, the AS join generates an

output tuple u(ts1, x1, g1, j1, a1 * cg, g2, j1, v2, cg) (see Definition 5 for the coalesced

value a1 * cg). This tuple is input to the AS update operator, which then makes the

same update (i.e., a1 * cg and v2) on the aggregation set AS. 

6. QUERY PROCESSING ALGORITHM, TRANSFORMATION

EQUIVALENCE, AND COST FUNCTIONS 

In this section, we first present a generic algorithm for executing a QEP, i.e. a late

aggregation plan (LAP) or an early aggregation plan (EAP). Then, based on the

algorithm, we show the equivalence of the LAP and EAPs, and build generic cost

functions of them. 

6.1 Generic Algorithms for Query Processing 

Algorithm 1 outlines a high-level algorithm for processing tuples with a multi-way

join among m (m ≥ 2) streams S1, S2, ..., Sm
4. The algorithm is generic enough to cover

any of the possible QEPs. It updates the output aggregation set ASout for each tuple

Sk in the window increment Wk
+ and each tuple rk in the window decrement Wk

−. The

algorithm performs (1) AS updates on the output of an EA operator in lines 3 and 9

if there exists an EA operator on Sk, (2) window updates in lines 4 and 10, (3) either

AS joins or window joins in lines 5 and 11 depending on whether an EA operator is

placed on Sk, and (4) AS updates on the query output ASout in lines 6 and 12. 

As mentioned in the Introduction, our query processing algorithm can be used to

execute a stream-relation join as well. In this case, a relation can be viewed as a

window with no update of tuples, and therefore an aggregation set produced by an EA

4This algorithm processes tuples in pipelined fashion, but it may be queue-based as well. The
query transformation works well with both types of algorithms. 



Transformation of Continuous Aggregation Join Queries over Data Streams 42

Journal of Computing Science and Engineering, Vol. 3, No. 1, March 2009

operator on a relation is fixed. 

Algorithm 1. A generic QEP-execution algorithm. 

6.2 Equivalence of Query Transformations 

In this subsection, we show the equivalence between an LAP and EAPs generated

using the query transformation rule presented in Section 5. We first prove, in

Theorem 1, the equivalence considering the case in which both input streams have

grouping attributes and aggregation attributes of the query (see Figure 3d), as this is

the most general case. Then, in Corollaries 1 and 2, we prove the equivalence for more

special cases (see Figures 3b, and c). A two-way join case is considered first for

simplicity (in Theorem 1, Corollary 1, and Corollary 2), and then it is extended to a

multi-way join case in Theorem 2. 

Theorem 1 Consider an aggregation two-way join query, and assume that there are

grouping attributes in both streams and aggregate attributes in both streams.

Additionally, consider an EAP that can be generated by placing EA operators on both

input streams in an LAP according to the Rule 1 (see EAP11 in Figure 3d). Then, the

aggregation set produced by the LAP (see Figure 3a) is always the same as the

aggregation set produced by the EAP.



43 Tri Minh Tran and Byung Suk Lee

Journal of Computing Science and Engineering, Vol. 3, No. 1, March 2009

Proof. The LAP (Figure 3a) is executed in the following steps based on the QEP

execution algorithm (Algorithm 1). 

 (1)

(2)

(3)

(4)

(5)

(6)

where Tlate
+ is a virtual window increment due to the tuple s1 in W1

+(t1, t2), and Tlate
−

is a virtual window decrement due to the tuple r1 in W1

−(t1, t2). The EAP (Figure 3d)

is executed in the following steps based on the QEP execution algorithm.

(7)

(8)

 (9)

(10)

 (11)

 (12)

 (13)

(14)

Tearly
+ and Tearly

− are the counterparts of Tlate
+ and Tlate

−, respectively. 

The LAP (Figure 3a) and the EAP (EAP11 in Figure 3d) are both symmetric. Thus,

it suffices to prove the equivalence for one-way joins only. Let us arbitrarily choose the

one-way window join from S1 to W2 for LAP and the one-way AS join from S1 to AS2

for EAP. We can prove the equivalence using induction. 

● Base case: Initially, ASlate ≡ASearly = .

● Inductive case: If ASlate ≡ ASearly holds at time t1, then ASlate ≡ASearly holds at time

t2 > t1 after being updated for each tuple s1 in W1

+(t1, t2) and for each tuple r1 in W1

−

(t1, t2). To prove this inductive case, we need to show that ASlate in Equation 6 is equal

to ASearly in Equation 14 after executing the algorithm for an arbitrary newly added

tuple s1 and an arbitrary removed tuple r1. Here, since the equations for the

decrement are parallel to the equations for the increment, it suffices to show the

equivalence only for the increment, that is, for s1 only. Let us show this now. 

LAP case (ASlate): Assume the tuple s1(ts1, x1, g1, j1, a1) in Equation 2 matches c



Transformation of Continuous Aggregation Join Queries over Data Streams 44

Journal of Computing Science and Engineering, Vol. 3, No. 1, March 2009

tuples {s2(ts2i, x2i, g2i, j2, a2i)|i = 1, 2, ..., c} (where s1.j1 = s2.j2) in W2. Then, the window

join in Equation 2 generates c output tuples {u(ts1, x1, g1, j1, a1, ts2i, x2i, g2i, j2,

a2i)|j1 = j2, i = 1, 2, ..., c}, which are inserted into Tlate
+. Further assume that among the

c matching tuples in W2, cg2 tuples have the same value of g2i (let us denote the same

value as g2). Then, there are cg2 output tuples (each denoted as u) in Tlate
+ with the

same grouping attribute value (g1, g2). In addition, all the cg2 tuples in Tlate
+ have the

same aggregate value a1 and, therefore, the aggregation F1(A1) of the cg2 tuples is

computed as f(cg2, a1) (see Definition 5 for f(·)). For F2(A2), since A2 belongs to stream

S2, the aggregation is computed straightforwardly by applying F2 on the a2 values of

the cg2 tuples. 

EAP case (ASearly): Consider Equation 9, which is an AS join for finding, from AS2,

tuples that match the tuple s1(ts1, x1, g1, j1, a1). Note that AS2 is the output of an

aggregation operator with the schema of four attributes − two from grouping

attributes (G2, J2) and two from aggregation functions F2(A2) and COUNT. Thus,

given the above tuple s1, it is matched with the tuples in AS2 via the join condition

S1.J1 = AS2.J2. There exists only one matching tuple l(g2, j2, v2, cg2) where v2 = F2(A2)

and cg2 = COUNT(*) because cg2 tuples with the same grouping attribute value (g2, j2)

in LAP case are grouped into one tuple in AS2 with count cg2. Then, by the definition

of AS join (Definition 6), a single join output tuple (denoted as u(ts1, x1, g1, j1, v1, g2,

j2, v2, cg2) where j1 = j2) is generated and inserted into Tearly
+; in the tuple u, the

aggregate value v1 (of the attribute A1) is computed as v1 = f(cg2, a1), and the aggregate

value v2 (of the attribute A2) is computed using the query aggregation function as

v2 = F2(A2).

From the LAP case and the EAP case above, we conclude that AS update using

Tlate
+ (in Equation 3) and AS update using Tearly

+ (in Equation 10) both update the

tuple whose grouping attribute value equals (g1, g2) by the same value computed

using f(cg2, a1) and F2(A2). 

Corollary 1 Consider an aggregation two-way join query, and assume that there are

grouping attributes in both streams and aggregate attributes in both streams.

Additionally, consider an EAP that can be generated by placing an EA operator on

only one input stream in an LAP according to the Rule 1 (see EAP10 and EAP01 in

Figures 3b and c). Then, the aggregation set produced by the LAP (see Figure 3a) is

always the same as the aggregation set produced by the EAP.

Proof. EAP10 in Figure 3b and EAP01 in Figure 3c each have one window join and

one AS join. Since these two EAPs are symmetric to each other, it suffices to show the

equivalence for only one. Let us arbitrarily choose EAP01. First, the window join from

S2 to W1 in EAP01 is identical to that in LAP. Second, the AS join (from S1 to AS2)

in EAP01 is equivalent to the other window join (from S1 to W2) in LAP, as already

proven in Theorem 1 (see the LAP case (ASlate) and the EAP case (ASearly) in the

theorem). Hence, LAP and EAP10 are equivalent. 

Corollary 2 Consider an aggregation two-way join query, and assume that there are



45 Tri Minh Tran and Byung Suk Lee

Journal of Computing Science and Engineering, Vol. 3, No. 1, March 2009

grouping attributes in both streams but aggregation attributes in only one stream.

Additionally, consider an EAP that can be generated by placing an EA operator on

either only one input stream according to the Rule 1 or both input streams. Then, the

aggregation set produced by the LAP is always the same as the aggregation set

produced by the EAP.

Proof. The query considered in this corollary is a special case of the query considered

in Theorem 1 and Corollary 1 in that the set of aggregation attributes in one stream

is empty. Since the four QEPs in Figure 3 are equivalent by Theorem 1 and Corollary

1, we need only show that the QEPs in Figure 3 are reduced to the QEPs in this

corollary in the special case. Since EAP10 and EAP01 in Figure 3 are symmetric to

each other, we can arbitrarily choose either one of A1 and A2 to be empty. Let us

assume A2 is empty. In this case, first, there is no aggregation function F2(A2) in any

of the QEPs, since A2 does not exist. Second, there is no aggregation function

COUNT(*) in the EA operator that is placed on the stream with aggregation

attributes. This is because the aggregate value of output tuples is equal to F1(A1) only,

which is calculated by the EA operator. When we apply these two changes, the QEPs

in Figure 3 become identical to the QEPs in this corollary.

Theorem 2 Consider an aggregation multi-way join query. Additionally, consider an

EAP that can be generated by placing EA operators on one or more input streams in

an LAP according to the Rule 1. Then, the aggregation set produced by the LAP is

always the same as the aggregation set produced by the EAP.

Proof. Let m(>2) be the arity of a multi-way join. Then, the m-way join can be

executed as a sequence of m − 1 two-way joins or, equivalently, m − 1 pairs of one-way

joins. The LAP has a sequence of m − 1 pairs of one-way window joins and one

aggregation operator at the output of the join sequence. The alternative QEPs (i.e.,

EAPs) generated by the rules differ in where EA operators are placed among the m

input streams and, depending on whether an EA operator has been placed on the

joined stream or not, each one-way join is either a window join or an AS join (with

the associated AS update). In other words, an EAP has a sequence of m − 1 pairs of

one-way window or AS joins and one aggregation operator at the output of the join

sequence. Note that, by Theorem 1 and Corollary 1, the results from intermediate

two-way joins, generated in the LAP and any of the EAPs, are always equivalent.

Therefore, it naturally holds that LAP and EAPs are equivalent for a multi-way join. 

6.3 Generic Cost Functions 

We use a unit-time cost model, proposed by Kang et al. in [Kang et al., 2003], as the

cost metric. Given a QEP, it estimates the time to process tuples arriving in unit time.

We consider two-way joins for simplicity; it is straightforward to extend it for multi-

way joins. Table 2 summarizes the notations used in the formulas (mi and ni are

derived parameters. Their derivation will be explained in Section 7.1.1). 

Generic unit-time cost functions of four possible QEPs are formulated as follows. We

believe the terms in the formulas are evident from the algorithm (Algorithm 1).



Transformation of Continuous Aggregation Join Queries over Data Streams 46

Journal of Computing Science and Engineering, Vol. 3, No. 1, March 2009

Generic cost function of an LAP: 

(15)

Generic cost functions of EAPs: 

(16)

(17)

(18)

Using these cost functions, the query optimizer can estimate the costs of the QEPs

(i.e., LAP and all possible EAPs) and then select the one that has the smallest

estimated execution time. By the design of an early aggregation in an EAP, the EAP

costs (especially CEA11) are typically lower than the LAP cost CLA. But this is not

guaranteed, and any of the QEPs may be the “winner” depending on the input stream

statistics (e.g., stream rates, join selectivity factors, number of groups). For instance,

the performance benefit of an EAP diminishes as the number of groups increases.

Thus, the selection of the most efficient QEP can be changed over time if the input

stream statistics change. 

Table II. Notations in generic cost formulas.

Cost terms 

Notation Meaning 

CLA Cost of an LAP. 

CEA01 Cost of an EAP when an EA operator is placed on S2 only. 

CEA10 Cost of an EAP when an EA operator is placed on S1 only. 

CEA11 Cost of an EAP when EA operators are placed on both S1 and S2. 

Cfmt(Wi) Cost of finding matching tuples in Wi for each new arrival tuple. 

Cuw(Wi) Cost of updating Wi for each new arrival tuple. 

Ciau(ASi) Cost of AS update on the aggregation set ASi for each new arrival tuple.

Input stream and query statistics 

Notation Meaning 

i Stream rate of Si, i.e., the average number of tuples arriving at stream Si 

in unit time (i = 1, 2). 

mi Join cardinality of Wi, i.e., the average number of matching tuples found in 

Wi for each tuple in stream Si (i = 1, 2). (derived) 

ni Join cardinality of ASi, i.e., the average number of matching tuples found 

in ASi for each tuple in stream Si (i = 1, 2). (derived) 

Si denotes the stream on the opposite side. 



47 Tri Minh Tran and Byung Suk Lee

Journal of Computing Science and Engineering, Vol. 3, No. 1, March 2009

7. EVALUATIONS 

In this section, we validate the cost functions and then study the performance of the

proposed query transformations with a focus on the QEP efficiencies. There are three

objectives of our experiments: (1) validate the cost functions by comparing the

execution times of QEPs between the cost functions and the prototype program, (2)

examine the performance trends of the alternative QEPs for varying key parameter

values and (3) show cases of each alternative QEP being the most efficient one in

relation to the parameter values. The first objective is important since a valid cost

function enables a query optimizer to choose the right QEP in a set of equivalent

QEPs. The last two objectives are to confirm the need for a (transformation-based)

query optimizer. 

We first instantiate the generic cost functions for different implementation choices

and describe a setup for the experiments in Section 7.1. Then, we present the

experiments and their results in Section 7.2. 

7.1 Setup 

7.1.1 Implementation-specific cost functions 

In the implementation, we consider the nested loop join and the hash join for AS and

window joins. We consider hash-based grouping for all aggregation sets. Equations 19

through 22 show the cost functions instantiated from the generic models (Equations

15 through 18) when using a nested loop join, and Equations 23 through 26 show

those when using a hash join. Notations used in the formulas are summarized in

Table 3. We assume the grouping attributes, aggregation attributes, and join attributes

are independent and that each of them has the uniform distribution. In the experiments

we use the query illustrated in Figure 3, with SUM used as the aggregation function

for both F1 and F2.

(19)

(20)

(21)

(22)
•·•·

(23)

(24)

(25)

(26)

In these cost formulas, the parameters α, αi, mi, ni, Bi and Bg are derived from wi,

σi, and gi (i = 1, 2). Details of the derivations appear in Appendix A. The model tuning

parameters Pn, Un, Ph, Uh and Ug are constant processing costs per tuple. Their values



Transformation of Continuous Aggregation Join Queries over Data Streams 48

Journal of Computing Science and Engineering, Vol. 3, No. 1, March 2009

are obtained by measuring the execution time for processing 10,000 tuples and

computing the average per tuple. Note that each term in the cost functions has a

factor of two, since the cost is measured for one tuple in the window increment and

one tuple in the window decrement. 

7.1.2 Prototype 

The prototype is a program that implements the QEP algorithm shown in Algorithm 1.

It is programmed to execute a multi-way join, but we use only two-way joins in most

Table III. Notations used in the cost formulas.

Cost terms 

Notation Meaning 

CNLA, CHLA CLA when using a nested loop join and a hash join, respectively. 

CNEA01, CHEA01 CEA01 when using a nested loop join and a hash join, respectively. 

CNEA10, CHEA10 CEA10 when using a nested loop join and a hash join, respectively. 

CNEA11, CHEA11 CEA11 when using a nested loop join and a hash join, respectively. 

Input stream and query statistics 

Notation Meaning 

σi Average join selectivity factor of tuples in window WSi for each tuple 

arriving at stream Si (i = 1, 2). 

gi Maximum number of groups in stream Si. 

wi Size (i.e., number of tuples) of window Wi (i = 1, 2). 

α Size (i.e., number of tuples) of aggregation set AS (derived). 

αi Size (i.e., number of tuples) of aggregation set ASi (i = 1, 2) (derived). 

System parameters 

Notation Meaning 

Bi Number of buckets in the hash table created on the join attribute in 

stream Si (i = 1, 2) (derived). 

Bg Number of buckets in the hash table created on the grouping attribute 

(de rived). 

B Maximum size (i.e., number of buckets) allowed for a hash table. 

Cost function tuning parameters 

Notation Meaning 

Pn, Ph Per-tuple cost of probing a window or an aggregation set in a nested loop 

join and a hash join, respectively. 

Un, Uh Per-tuple cost of updating a window in a nested loop join and a hash join, 

respectively. 

Ug Per-tuple cost of finding and updating a group (tuple) within an 

aggregation set. 

Si denotes the stream on the opposite side.



49 Tri Minh Tran and Byung Suk Lee

Journal of Computing Science and Engineering, Vol. 3, No. 1, March 2009

experiments; we add one experiment later using a three-way join to show the

consistency of the results regardless of the join arity. The prototype uses the same join

methods and grouping methods as those assumed in the cost functions (see Section

7.1.1). Additionally, it executes a join using sliding windows, of which tumbling and

landmark windows are only special types (see Section 3). 

Inputs to the prototype program are data streams generated using a data

generator5 (described below), the join arity (i.e., number of data streams) (m), the size

of each join window (w1, w2), and the QEP case number (0 for LAP, 1, 2, 3, ... 2m −

1 for EAPs). It then processes the input stream data according to the specified QEP

and reports the execution time. This task is performed by two processes running

concurrently: one process reads new arrival tuples from the input stream data files

and feeds them to the other process for join execution. The program has been written

in Java 2 SDK 1.4.2, and runs on a Linux PC with Pentium IV 1.6GHz processor and

512MB RAM. 

The data generator generates stream data sets as a sequence of tuples. Inputs to

the data generator are the number of tuples in the data set, the number of attributes

in the stream schema, the stream rate (i.e., number of tuples per second), the number

of groups in the stream, and the number of distinct values of the join attribute. (A join

selectivity factor equals the reciprocal of the number of distinct values of the join

attribute.) Each tuple has a timestamp attribute, whose value is determined based on

the stream rate. It also has other attributes such as join attribute, grouping attribute,

and aggregation attribute. As mentioned in Section 7.1.1, values of these attributes

are independent and assigned randomly with the uniform distribution. We use the

string data type for grouping and join attributes and the integer data type for

aggregation attribute. 

7.2 Experiments and Results 

In this section, we first validate the cost functions in Section 7.2.1. Then, in Section

7.2.3, we build showcases of different alternative QEPs being the most efficient ones.

In all the experiments, the execution time of a QEP is reported per time-unit (second).

For this, we measure the execution time for tuples arriving in 1000 milliseconds. We

run each experiment three times, for one time-unit at each run, and compute the

average execution time in seconds. 

7.2.1 Cost function validations 

A valid cost function enables a query optimizer to choose the right QEP that is the

most efficient among all alternative QEPs considered. In this regard, we compare the

relative efficiencies among alternative QEPs (generated by the query transformation)

between those obtained using the cost function and those obtained using the prototype.

In each set of experiments, we measure the execution time of QEPs by varying one

of the four pairs of parameters: (1) window size (w1, w2), (2) number of groups (g1, g2),

(3) stream rate ( 1, 2), and (4) join selectivity factor (σ1, σ2). Furthermore, for each

5The data generator allows us to vary the input stream statistics so that we can evaluate the
efficiencies of alternative QEPs with different input parameters.



Transformation of Continuous Aggregation Join Queries over Data Streams 50

Journal of Computing Science and Engineering, Vol. 3, No. 1, March 2009

pair of parameters we vary only the parameters of stream S1 (i.e., w1, g1, 1 and σ1),

since the QEPs are symmetric. 

Figure 4 shows a comparison between the cost function and the prototype. (As

mentioned in the Introduction section, we show only the results obtained using the

hash join, and refer the readers to [Tran and Lee 2007] for the results obtained using

the nested loop join.) The cost function tuning parameters (Pn, Ph, Un, Uh, Ug in Table

3) are tuned separately in each set of experiments. The same setting has been used

for other parameters ( i, wi, gi, and σi for i = 1, 2) across the four sets of experiments

in each case of varying the parameters. 

In the figure, the shapes of performance curves are very similar between the cost

function and the prototype. Moreover, the ranking of efficiencies among alternative

QEPs is the same between them most of the time. This confirms the precision of the

cost functions as usable by a query optimizer. 

7.2.2 Query execution costs for varying stream statistics 

Figure 4 also shows the performance of four alternative QEPs (i.e., LAP, EAP01,

EAP10, EAP11) depending on each of the four parameters. Let us now examine the

results of each set of experiments to each varying parameter (i.e., window size,

number of groups, stream rate, join selectivity factor). 

Varying window size: We vary w1 from 1000 to 5000 tuples at the increment of 1000

while fixing w2 at 5000. In the figure, as w1 increases, LAP and EAP01 increase

linearly. In contrast, EAP10 and EAP11 initially increase linearly but then stay

constant as w1 exceeds 2000. The reason for this is as follows: In LAP and EAP01,

there is no EA operator placed on S1 and, therefore, the execution time depends on

w1 only. Unlike this, in EAP10 and EAP11 which have an EA operator placed on S1,

the cost stops depending on w1 but starts depending on α1 (which is fixed) when w1

is greater than 2000 (see α1 in Appendix A). Additionally, EAPs are always better

than LAP because in these experiments, α1 and α2 are set smaller than window size

w1 and w2. 

Varying the number of groups: We vary g1 from 3 to 19683 (= 39) by a factor of 3.

In the figure, as g1 increases, EAP10 increases and approaches LAP and, likewise,

EAP11 increases and approaches EAP01. The initial increase of EAP10 and EAP11

is caused by the increase of the aggregation set size (α1). But, as g1 becomes large

enough (g1 = 38), α1 stops depending on g1  and starts depending on w1 (see α1 in

Appendix A). As a result, EAP10 and EAP11 loses the advantage of placing an EA

operator on S1. 

Varying stream rate: We vary 1 from 100 to 900 tuples/second while fixing 2 at

500. In the figure, as 1 increases, the costs of all four QEPs increase linearly but

LAP and EAP10 increase faster than EAP01 and EAP11. The reason is that the per-

tuple processing time for each tuple from S1 in EAP01 and EAP11 is shorter than

that in LAP and EAP10, as it takes less time to find matching tuples in an

aggregation set AS2 instead of W2. 

Varying join selectivity factor: We vary σ1 and σ2 equally from 0.0005 to 0.5 by a

factor of 10. As σ(≡ σ1 = σ2) increases, the costs of all four QEPs increase when a hash

join is used (see Figure 4d). The reason for the cost increase is that a higher join

1

σ1

-----



51 Tri Minh Tran and Byung Suk Lee

Journal of Computing Science and Engineering, Vol. 3, No. 1, March 2009

selectivity factor leads to more matching tuples from a join, which in turn leads to

more tuples updating the query aggregation set (AS). 

Figure 4. Execution times of QEPs between cost function and prototype (two-way hash join,

B = 1021). 



Transformation of Continuous Aggregation Join Queries over Data Streams 52

Journal of Computing Science and Engineering, Vol. 3, No. 1, March 2009

Extension to a three-way join 

We have extended the experiments shown in Figures 4 to use three-way joins. Similar

to the two-way join experiments, we vary the values of parameters in stream S1 and

fix those in the other streams (S2 and S3). The results are shown in Figures 5. There

are eight alternative QEPs for a three-way join. The performance curves show the

Figure 5. Execution times of QEPs between cost function and prototype (three-way hash join).



53 Tri Minh Tran and Byung Suk Lee

Journal of Computing Science and Engineering, Vol. 3, No. 1, March 2009

same trends as in the two-way join experiments. That is, there is a similarity between

the cost function and the prototype, and the rankings of efficiencies among alternative

QEPs are the same between them. Interestingly, the performance advantage of an

early aggregation is bigger than the two-way join case. This is because the reduction

of join cardinality is magnified as the arity of a join increases. 

7.2.3 Showcases of different best QEPs 

Intuitively, the advantage of an early aggregation is more highlighted when the

number of groups (gi) is smaller or the join selectivity factor (σi) is larger or the

window size (wi) is larger. Specifically, a decrease in the number of groups leads to

a decrease of an EA output aggregation set size in an EAP, thus enhancing the benefit

of join reduction due to early aggregation. On the other hand, an increase in the join

selectivity factor or an increase in the window size leads to an increase of join output

tuples in an LAP, thus increasing the penalty of late aggregation. 

Figure 6 shows the cases where different QEPs are chosen as the most efficient one.

The result confirms the intuition. That is, EAP11 is the best when both g1 and g2 are

low, EAP10 is the best when g1 is low and g2 is high, EAP01 is the best when g1 is

high and g2 is low, and LAP (or, “EAP00”) is the best when both g1 and g2 are high.

In Figure 6d, the scale of the graph is larger than those in the other figures (Figure

6a, b and c). This is because the execution times are much longer due to the higher

join selectivity factors and larger window sizes used to generate the showcase. 

Figure 6. Showcases of different best QEPs (using a two-way nested loop join). 



Transformation of Continuous Aggregation Join Queries over Data Streams 54

Journal of Computing Science and Engineering, Vol. 3, No. 1, March 2009

8. CONCLUSION 

In this paper, we addressed the problem of continuously processing aggregation join

queries on data streams using query transformations. We proposed an incremental

query processing model with two key stream operators, aggregation set update and

aggregation set join. Based on the processing model, we presented a query

transformation rule to generate alternative query execution plans depending on which

input streams early aggregations are applied to. We then developed an algorithm for

executing the query execution plans and built a prototype that implemented the

algorithm. Based on the algorithm, we validated the rule theoretically through an

inductive proof of the equivalence of alternative QEPs. Given alternative QEPs, a

query optimizer needs the cost functions of individual QEPs to choose the best one

with the minimum estimated cost. In this regard, we developed analytical cost

functions and validated them through experiments. We also empirically studied the

efficiencies of alternative QEPs and showed the cases of different best QEPs with

respect to stream statistics.

Query transformation has been studied extensively in databases but not in data

streams. To our knowledge, this is the first work addressing query transformation on

aggregation join queries over data streams. Our query transformation rule is simple

and yet generic to be applicable to any input streams. The results of our experiments

indicate that the query transformation indeed generates alternative QEPs of which

the efficiencies are distinct enough to influence a stream query optimizer. 

In our work, the cost functions consider the execution time as the cost. Ideally,

however, the space overhead should be part of the cost as well. The primary space

overhead would be for storing the aggregation sets, and this overhead would depend

on the number of distinct values of either or both of the grouping attributes and the

join attributes in each aggregation set. Besides, the cost functions consider the

execution time of only basic arithmetic aggregation functions such as SUM, COUNT,

AVG, MIN, and MAX. The extension of the cost model to consider the storage space

overhead and to work with more complex aggregation functions (e.g., nested-grouped

aggregations, expensive statistical aggregations) is an interesting problem for future

work. 

We considered only the query transformation as an essential part of the query

optimizer. Broader future work includes developing a comprehensive framework that

integrates other components such as a stream statistic monitor and an efficient search

algorithm for finding an optimal QEP. Regarding the latter, query optimization is

done typically online in a data stream processing environment and thus its complexity

may better be polynomial. In this case, one possible polynomial algorithm idea is

based on a greedy heuristic. Specifically, an early aggregation is inserted on an input

stream if the cost reduction resulting from using a one-way aggregation set join

instead of a one-way window join is greater than the added cost of updating the

aggregation set of the early aggregation.

ACKNOWLEDGMENTS 

We thank Professor X. Sean Wang at University of Vermont for his comments on

several technical aspects of the research. This research has been supported by



55 Tri Minh Tran and Byung Suk Lee

Journal of Computing Science and Engineering, Vol. 3, No. 1, March 2009

Vermont EPSCoR Grant No. 524376 and US National Science Foundation through

Grant No. IIS-0415023. Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the authors and do not necessarily reflect the

views of the National Science Foundation. 

APPENDIX

A Derivations of Parameters in Implementation-Specific Cost Functions

In this section, the derivation of the parameters α, αi, mi, ni, Bi and Bg, used in the

cost formulas (Equations 19 to 26), are described in detail. We consider the case of the

experimental query (Figure 3), in which both streams have grouping attributes and

aggregation attributes. 

• α =min(w1, g1) * min(w2, g2): AS is the result of grouping tuples produced from the

window join of W1 and W2 on the grouping attributes G1 and G2. Thus, its size is

capped to the product of the number of possible value of G1 in W1 and the number of

possible values of G2 in W2. Let us denote these two numbers as k1 and k2. Then,

α ≤ k1 × k2. In addition, k1 is the smaller between the maximum number of groups in

the stream S1 and the number of tuples (i.e., size) in the window W1, that is, k1 =

min(g1, w1) and, likewise, k2 = min(g2, w2). Hence, α ≤ min(g1, w1) ×min(g2, w2). We

use the upper bound as the value of α·so α = min(g1, w1) × min(g2, w2).

• α1 = min(w1, g1 ): AS1 is the output of an EA operator that groups on both grouping

attribute G1 and join attribute J1 (Figure 3(d)). Therefore, the size of AS1 (α1) is no

larger than the maximum number of possible groups (on G1 and J1) in the stream S1.

This maximum number is the product of g1 and the number of distinct values of join

attribute (i.e., join cardinality = ) in S1. Thus, α ≤ g1 × . Moreover, the size of AS1

is limited by the window size w1 as well. Hence, α1 is estimated as the smaller of the

two (i.e., g1  and w1).

• α2 = min(w2, g2 ): This is symmetric to the case of α1.

• m1 = α1w1: m1 is the average number of matching tuples found in W1. Thus, it can

be estimated by the product of join selectivity factor σ1 and window size w1.

• m2 = σ2w2: This is symmetric to the case of m1.

• n1 = min(w1σ1, g1): Since AS1 is the output of an EA operator that groups on both

grouping attribute G1 and join attribute J1, n1 (the average number of matching

tuples for each join attribute value) is either the number of groups g1 or the number

of matching tuples found in W1 (= w1σ1), whichever is smaller. 

• n2 = min(w2σ2, g2): This is symmetric to the case of n1. 

• B1 = min(1/σ1, B): This equation estimates hash table size on join attribute in stream

S1. We set the hash table size equal to the join cardinality in stream S1 (= ), capped

by the maximum hash table size B.

• B2 = min(1/σ2, B): This is symmetric to the case of B1.

• Bg = min(g1, B): The hash table of ASis constructed on grouping attribute G1.

Therefore, the number of buckets equals the number of groups g1, capped by B. 

REFERENCES

ABADI, D. J., D. CARNEY, U. ÇETINTEMEL, M. CHERNIACK, C. CONVEY, S. LEE, M. STONEBRAKER,

1

σ1

-----

1

σ1

-----

1

σ1

-----

1

σ1

-----

1

σ2

-----

1

σ1

-----



Transformation of Continuous Aggregation Join Queries over Data Streams 56

Journal of Computing Science and Engineering, Vol. 3, No. 1, March 2009

N. TATBUL, AND S. B. ZDONIK. 2003. Aurora: a new model and architecture for data stream

management. The VLDB Journal 12:120−139. 

ARASU, A. AND G. S. MANKU. 2004. Approximate counts and quantiles over sliding windows. In:

Proceedings of the 23th Symposium on Principles of Database Systems. ACM Press 286−296. 

ARASU, A. AND J. WIDOM. 2004. Resource sharing in continuous sliding-window aggregates. In:

Proceedings of the 30th International Conference on Very Large Data Bases. Morgan Kaufmann

336−347. 

AYAD, A. AND J. F. NAUGHTON. 2004. Static optimization of conjunctive queries with sliding

windows over infinite streams. In: Proceedings of the 23rd International Conference on

Management of Data. ACM Press 419−430. 

BABCOCK, B., S. BABU, M. DATAR, R. MOTWANI, AND J. WIDOM. 2002. Models and issues in data

stream systems. In: Proceedings of the 21st ACM Symposium on Principles of Database

Systems. ACM Press 1−16. 

BABCOCK, B., M. DATAR, AND R. MOTWANI. 2004. Load shedding for aggregation queries over

data streams. In: Proceedings of the 20th International Conference on Data Engineering,

IEEE Computer Society 350.

BABU, S., A. ARASU, AND J. WIDOM. 2003. CQL: A language for continuous queries over streams

and relations. In: Proceedings of the 8th International Symposium on Database Programming

Languages. Springer 1−19. 

BAI, Y., H. THAKKAR, H. WANG, C. LUO, AND C. ZANIOLO. 2006. A data stream language and

system designed for power and extensibility. In: Proceedings of the 15th International

Conference on Information and Knowledge Management. ACM Press 337−346. 

CHANDRASEKARAN, S., O. COOPER, A. DESHPANDE, M. J. FRANKLIN, J. M. HELLERSTEIN, W.

HONG, S. KRISHNAMURTHY, S. R. MADDEN, F. REISS, M. A. SHAH, AND C. Q. TELEGRAPH.

2003. continuous dataflow processing. In: Proceedings of the 22nd International Conference on

Management of Data. ACM Press 668−668. 

CHAUDHURI, S. AND K. SHIM. 1994. Including group-by in query optimization. In: Proceedings of

the 20th International Conference on Very Large Data Bases. Morgan Kaufmann 354−366.

CHEN, J., D. J. DEWITT, F. TIAN, Y. WANG, AND C. Q. NIAGARA. 2000. a scalable continuous query

system for internet databases. In: Proceedings of the 19th International Conference on

Management of Data. ACM Press 379−390. 

CONSIDINE, J., F. LI, G. KOLLIOS, AND J. W. BYERS. 2004. Approximate aggregation techniques for

sensor databases. In: Proceedings of the 20th International Conference on Data Engineering.

IEEE Computer Society 449−460.

CRANOR, C., T. JOHNSON, O. SPATASCHEK, AND V. SHKAPENYUK. 2003. Gigascope: a stream

database for network applications. In: Proceedings of the 22nd International Conference on

Management of Data. ACM Press 647−651. 

DAS, A., J. GEHRKE, AND M. RIEDEWALD. 2003 Approximate join processing over data streams. In:

Proceedings of the 22nd International Conference on Management of Data. ACM Press 40−51. 

DING, L. AND E. A. RUNDENSTEINER. 2004. Evaluating window joins over punctuated streams. In:

Proceedings of the 13rd International Conference on Information and Knowledge Management.

ACM Press 98−107. 

DOBRA, A., M. GAROFALAKIS, J. GEHRKE, AND R. RASTOGI. 2002. Processing complex aggregate

queries over data streams. In: Proceedings of the 21st International Conference on Management

of Data. ACM Press 61−72. 

GEHRKE, J., F. KORN, AND D. SRIVASTAVA. 2001. On computing correlated aggregates over

continual data streams. SIGMOD Record 30:13−24. 

GHANEM, T. M., M. A. HAMMAD, M. F. MOKBEL, W. G. AREF, AND A. K. ELMAGARMID. 2007.

Incremental evaluation of sliding-window queries over data streams. IEEE Transactions on

Knowledge and Data Engineering 19:57−72. 

GILBERT, A. C., Y. KOTIDIS, S. MUTHUKRISHNAN, AND M. STRAUSS. 2001. Surfing wavelets on

streams: One-pass summaries for approximate aggregate queries. In: Proceedings of the 27th



57 Tri Minh Tran and Byung Suk Lee

Journal of Computing Science and Engineering, Vol. 3, No. 1, March 2009

International Conference on Very Large Data Bases. Morgan Kaufmann 79−88. 

GOLAB, L. AND M. T. OZSU. 2003. Processing sliding window multi-joins in continuous queries over

data streams. In: Proceedings of the 29th International Conference on Very Large Data Bases.

ACM Press 500−511. 

GUHA, S. AND N. KOUDAS. 2002. Approximating a data stream for querying and estimation:

Algorithms and performance evaluation. In: Proceedings of the 18th International Conference on

Data Engineering. IEEE Computer Society 567−579. 

HAMMAD, M. A., W. G. AREF, AND A. K. ELMAGARMID. 2003. Stream window join: Tracking

moving objects in sensor-network databases. In: Proceedings of the 15th International

Conference on Scientific and Statistical Database Management. 75−84.

HAMMAD, M. A., M. F. MOKBEL, M. H. ALI, W. G. AREF, A. C. CATLIN, A. K. ELMAGARMID, M.

ELTABAKH, M. G. ELFEKY, T. M. GHANEM, R. GWADERA, I. F. ILYAS, M. S. MARZOUK, AND

X. XIONG. 2004. Nile: A query processing engine for data streams. In: Proceedings of the 20th

International Conference on Data Engineering. IEEE Computer Society 851−863.

JIANG, Z., C. LUO, W. C. HOU, F. YAN, AND Q. ZHU. 2006. Estimating aggregate join queries over

data streams using discrete cosine transform. In: Proceedings of the 17th International

Conference on Database and Expert Systems Applications. 182−192. 

KANG, J., J. F. NAUGHTON, AND S. D. VIGLAS. 2003. Evaluating window joins over unbounded

streams. In: Proceedings of the 19th International Conference on Data Engineering. IEEE

Computer Society 341−352. 

LI, J., D. MAIER, K. TUFTE, V. PAPADIMOS, AND P. A. TUCKER. 2005. Semantics and evaluation

techniques for window aggregates in data streams. In: Proceedings of the 24th International

Conference on Management of Data. ACM Press 311−322. 

MANJHI, A., S. NATH, AND P. B. GIBBONS. 2005. Tributaries and deltas: efficient and robust

aggregation in sensor network streams. In: Proceedings of the 24th International Conference

on Management of Data. ACM Press 287−298.

MOTWANI, R., J. WIDOM, A. ARASU, B. BABCOCK, S. BABU, M. DATAR, G. S. MANKU, C. OLSTON,

J. ROSENSTEIN, AND R. VARMA. 2003. Query processing, approximation, and resource

management in a data stream management system. In: Proceedings of the 1st International

Conference on Innovative Data Systems Research. 22−34.

SRIVASTAVA, U. AND J. WIDOM. 2004. Memory-limited execution of windowed stream joins. In:

Proceedings of the 13th International Conference on Very Large Data Bases. Morgan Kaufmann

324−335.

SULLIVAN, M. 1996. Tribeca: A stream database manager for network traffic analysis. In:

Proceedings of 22th International Conference on Very Large Data Bases. Morgan Kaufmann

594−606.

TATBUL, N. AND S. B. ZDONIK. 2006. Window-aware load shedding for aggregation queries over

data streams. In: Proceedings of the 15th International Conference on Very Large Data Bases.

ACM Press 799−810.

TRAN, T. M. AND B. S. LEE. 2007. Transformation of continuous aggregation join queries over data

streams. In: Proceedings of the 10th International Symposium on Advances in Spatial and

Temporal Databases. 330−347. 

URHAN, T. AND M. J. FRANKLIN. 2000. Xjoin: A reactively-scheduled pipelined join operator. In:

IEEE Data Engineering Bulletin. 27−33. 

VIGLAS, S., J. F. NAUGHTON, AND J. BURGER. 2003. Maximizing the output rate of multi-way join

queries over streaming information sources. In: Proceedings of the 29th International

Conference on Very Large Data Bases. ACM Press 285−296. 

VITTER, J. S. AND M. WANG. 1999. Approximate computation of multidimensional aggregates of

sparse data using wavelets. In: Proceedings of the 18th International Conference on Management

of Data. ACM Press 193−204. 

YAN, W. P. AND P. Å. LARSON. 1994. Performing group-by before join. In: Proceedings of the 10th

International Conference on Data Engineering. IEEE Computer Society 89:100.



Transformation of Continuous Aggregation Join Queries over Data Streams 58

Journal of Computing Science and Engineering, Vol. 3, No. 1, March 2009

YAN, W. P. AND P. Å. LARSON. 1995. Eager aggregation and lazy aggregation. In: Proceedings of

the 21st International Conference on Very Large Data Bases. Morgan Kaufmann 345−357.

ZHANG, R., N. KOUDAS, B. C. OOI, AND D. SRIVASTAVA. 2005. Multiple aggregations over data

streams. In: Proceedings of the 24th International Conference on Management of Data. ACM

Press 299−310.

Tri Minh Tran is a Ph.D. candidate in Computer Science at the

University of Vermont. He received the B.Eng. degree in Information

Technology from Hanoi University of Technology in 2001 and the MS

degree in Mathematics from Ohio University in 2003. He is currently

working as a Software Engineer in the Query Optimizer group at Teradata

Corporation. His main research interests include database systems, data

management and query processing.

Byung Suk Lee is Associate Professor of Computer Science at the

University of Vermont. His main research interests are database systems,

data management, and query processing. He held several positions in

industry and academia: previously at Gold Star Electric, Bell Communi-

cations Research, Datacom Global Communications, and University of St.

Thomas, and currently at the University of Vermont. He was also a

visiting professor at Dartmouth College and a participating guest at

Lawrence Livermore National Laboratory. He served on international

conferences as a program committee member, a publicity chair, a special

session organizer, and a workshop organizer, and also on the review panels

of US federal funding agencies. He holds a B.S. degree from Seoul National

University, M.S. from KAIST, and Ph.D. from Stanford University.


