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While the average-case performance is important for general-purpose applications, worst-case
performance is crucial for real-time systems to ensure schedulability and reliability. Recent
work has shown that simple prefetching techniques such as the Next-N-Line prefetching can
benefit both average-case and worst-case performance; however, the improvement on the worst-
case execution time (WCET) is rather limited and inefficient. This paper presents two instruc-
tion prefetching approaches that are specially designed to enhance the worst-case performance,
including the loop-based prefetching and WCET-oriented prefetching. Our experiments indicate
that both instruction prefetching techniques can achieve better worst-case execution cycles than
the Next-N-Line prefetching while having various impacts on the average-case performance.

Categories and Subject Descriptors: C3 [SPECIAL-PURPOSE AND APPLICATION-BASED

SYSTEMS]

Real-time and embedded systems; J7 [COMPUTERS IN OTHER SYSTEMS]: Real time
General Terms: Performance, Reliability
Additional Key Words and Phrases: Instruction prefetching, worst-case execution time, real-
time systems

1. INTRODUCTION

Many embedded systems ranging from heart pacemakers to automobile and aircraft

controllers require real-time computing. Missing deadlines in those systems may

endanger human lives or lead to other severe consequences. Worst-case execution

time (WCET) is critical for the schedulability and reliability of real-time systems. The

WCET can be typically obtained by using measurement or static analysis. The

measurement-based approach, however, is generally unsafe, since one cannot exhaust

the measurements on all the possible program paths. By comparison, static WCET
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analysis is a promising approach to safely and accurately estimate the WCET for real-

time applications [Wilhelm et al. 2008].

Cache memories have been widely used in microprocessors to mitigate the speed

gap between the slow memory and the fast processor. While cache memories are

detrimental to the time predictability of execution, prior work [Arnold et al. 1994;

Healy et al. 1995] shows that the worst-case performance of processors with instruction

caches can be reasonably bounded, which significantly outperforms the worst-case

performance of a microprocessor without using any instruction cache.

To further improve the instruction cache performance, various instruction prefetching

techniques [Smith 1978; Chow et al. 2004; Smith 1982; Smith and Hsu 1992; Pierce

and Mudge 1996; Joseph and Grunwald 1997; Luk and Mowry 1998; Xia and Torrellas

1996; Reinman et al. 1999; Srinivasan et al. 2001] can be used. These instruction

prefetching techniques generally prefetch instructions that are expected to miss before

they are accessed, thereby potentially reducing the number of instruction cache

misses or the associated miss penalties. In particular, instruction prefetching is

effective at reducing the cold misses, which is important for real-time computing in a

multiprogramming context, where instructions of a real-time thread may be evicted

by instructions of other real-time or non-real-time tasks. Recent work [Yan and Zhang

2007] shows that the Next-N-Line prefetching [Smith 1978; 1982] can benefit both the

average-case and the worst-case execution time; however, the improvement on the

worst-case performance is moderate and inefficient. The reason is that the Next-N-

Line prefetcher, designed for enhancing the average-case performance, always

prefetches the next N cache lines, regardless of the program control flow. This may

lead to excessive conflicts between the prefetched instructions and other useful

instructions in the cache. Such a cache pollution effect is especially problematic for

static timing analysis, since the WCET analyzer does not have the exact runtime

information and typically has to conservatively estimate the worst-case cache pollution

by considering all the possible instructions that might be affected by the prefetched

instructions, which are harmful to the tightness of WCET analysis.

While all the previous instruction prefetching techniques [Smith 1978; 1982; Smith

and Hsu 1992; Pierce and Mudge 1996; Joseph and Grunwald 1997; Luk and Mowry

1998] were designed for improving the average-case performance, this paper proposes

two instruction prefetching techniques specifically devised for enhancing the worst-

case performance, which are particularly useful for real-time applications. More

specifically, we study a loop-based approach and a WCET-oriented approach to

prefetching instructions efficiently for reducing the worst-case execution time of real-

time applications, which can also overcome the deficiencies of the Next-N-Line

prefetching [Smith 1978; 1982]. Our experiments indicate that both proposed

instruction prefetching techniques can achieve much better worst-case execution

cycles than the Next-N-Line prefetching. Also, the loopbased approach outperforms

the Next-N-Line prefetching in the average-case performance, while the WCET-

oriented approach is not always superior in terms of the average-case performance.

The rest of this paper is organized as the follows. Section 2 introduces the loop-

based instruction prefetching strategy. Section 3 presents the WCET-oriented instruction

prefetching technique. The evaluation methodology is explained in Section 4, and the
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experimental results are given in Section 5. Related work is discussed in Section 6.

Finally, we draw conclusions in Section 7.

2. LOOP-BASED INSTRUCTION PREFETCHING

The Next-N-Line prefetcher, proposed by Smith et al. [Smith 1978; 1982], always

prefetches the next N cache lines. While this prefetching policy is effective during the

sequential execution phase of the program, it becomes less useful or even harmful

when the control flow of runtime execution changes. In particular, the Next-N-Line

prefetcher [Smith 1978; 1982] is problematic at the boundaries of loops, which are

common in real-time applications. Since loops are likely to execute by many times

(especially in the worst case), the instructions prefetched after the loop branch (e.g.,

the branch that leads to the backward edge in the control flow graph [Muchnic 1997])

are useless, if not detrimental, except for the last loop iteration. Moreover, this

adverse effect of wrong instruction prefetching will be repeated, until the loop is

finished. To address this problem, we propose the loop-based prefetching, which

exploits the loop information to enhance the efficiency and performance of the Next-

N-Line prefetcher.

The loop-based instruction prefetching is built upon the Next-N-Line prefetcher

[Smith 1978; 1982]. In the loop-based prefetching, normally instructions are still

prefetched sequentially just like the Next-N-Line prefetcher; however, when a loop

branch is encountered, the loop-based prefetcher will prefetch N lines of instructions

from the beginning of the loop (i.e., the target address of the loop branch), not the next

N lines after the loop. The reason is that in the worst case, the loop branch is usually

taken except the last iteration.

Consequently, by prefetching instructions from the beginning of the loop rather

than the subsequent instructions after the loop body (i.e., on the fall-through path),

the direction of the instruction prefetching is kept consistent with the runtime

instruction fetching flow (except for the last loop iteration), potentially resulting in

better performance.

The architectural support for the loop-directed instruction prefetching is depicted in

Figure 1. We extend the traditional Next-N-Line prefetcher by simply adding a few

components, including a loop branch address register, a control signal LoopBranch-

Enable, a hardware table, and a multiplexer. The hardware table is used to store the

address of each loop branch and the associated loop header (i.e., the first instruction

of each loop). Since both loop branches and loop headers can be identified statically

at the compilation time [Muchnic 1997], we propose to store those addresses into the

hardware table before we run the program. Because typically there are only a small

number of static loops in a real-time program (although they may dominate the

execution time), the loop address hardware table can be kept small. In our experiments,

we use a hardware table with 8 entries, which has insignificant hardware overhead.

To direct the hardware prefetcher at runtime, we propose to use the compiler to

detect and annotate the loop branches at the compilation time. This can be simply

achieved by using either special opcodes for loop branches or exploiting unused fields

in the branch instructions for annotation. At runtime, when a loop branch instruction

is being executed, its address is then passed to the loop branch address register, and
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the LoopBranchEnable signal is enabled to 1 (normally, LoopBranchEnable is 0 for

non-loop-branch instructions). As we can see from Figure 1, the LoopBranchEnable

signal activates the associative search circuit to find the corresponding loop header

address (i.e., the target address of the loop branch) in the hardware table. This loop

header address is then passed to the multiplexer controlled by the LoopBranchEnable

signal. Since the LoopBranchEnable signal is enabled, the hardware prefetcher will

prefetch instructions from the loop header instead of the next instruction (i.e., PC+4)

after the loop branch. When a non-loop-branch instruction is executed, however, the

LoopBranchEnable signal will be disabled. In that case, the loop-directed prefetcher

will prefetch sequential instructions according to the Next-N-Line prefetching address

generator. It should be noted that for a processor that employs branch prediction, the

hardware overhead of the loop-directed prefetching can be further reduced, because

the hardware table shown in Figure 1 actually functions like a branch target address

(BTB) table (but only for loop branches), which may reuse the information in the

branch prediction hardware.

3. WCET-ORIENTED INSTRUCTION PREFETCHING

In addition to the loop-based prefetching, which is essentially a hybrid approach by

combining the hardware-based Next-N-Line prefetcher and the compiler-directed loop

information, we also study a pure software-basedWCET-oriented instruction prefetching

whose goal is to specifically optimize the worst-case performance, even probably at the

cost of the average-case performance. The idea of this approach is that the static

timing analyzer, for instance, the static cache simulation [Arnold et al. 1994; Healy

et al. 1995], can statically identify instructions (called statically missed instructions in

Figure 1. The architectural support for the loop-directed instruction prefetching.
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the rest of this paper) that will lead to instruction cache misses in the worst-case

scenario, which can be exploited to efficiently guide the instruction prefetching.

Specifically, the static cache simulation classifies the caching behavior of instructions

into four different categories based on their conditions. These four categories are

summarized below (note more details can be seen in [Arnold et al. 1994; Healy et al.

1995]).

(1) Always hit: A reference to an instruction is always hit if this instruction is

guaranteed to be always in the cache when it is accessed.

(2) Always miss: A reference to an instruction is always miss if this instruction is

guaranteed to be not in the cache when it is accessed.

(3) First hit: A reference to an instruction in a loop is first hit if the first access to this

instruction is a hit, while all remaining references to this instruction are

guaranteed to be misses.

(4) First miss: A reference to an instruction in a loop is first miss if the first access

to this instruction is a miss, while all remaining references to this instruction are

guaranteed to be hits.

Therefore, based on the static cache analysis, the compiler can insert prefetching

instructions in appropriate points in the program to reduce the penalties for those

statically missed instructions. If these statically missed instructions can be prefetched

in a sufficient amount of time (i.e., equal to or larger than the instruction cache miss

latency), then they are successfully converted into “always hit” instructions, thus

reducing the number of worst-case cache misses. Alternatively, even if a statically

missed instruction cannot be prefetched ahead enough to become a hit, prefetching

can still reduce the penalty of this miss in some degree, which also benefits the

WCET.

3.1 ISA Support

Today's microprocessors often provide non-blocking software prefetching instructions,

which can force a cache fill at a specified address in anticipation of an upcoming cache

miss [Panda et al. 1997]. In this work, we assume that we can extend the instruction

set to specify the address of an instruction that needs to be prefetched, which is called

the instruction prefetching address field in this paper. This instruction prefetching

address field is used to specify the relative distance between the address of the

prefetched instruction and the current instruction, which can be calculated statically.

By default, all the bits of the instruction prefetching address field are zero, indicating

no prefetching is needed. Since in this work we only allow the compiler to insert

prefetching instruction within the same basic block (see below), the prefetching

distance is typically short. Therefore, only a few bits (4 bits are assumed in this paper)

are needed to specify the prefetching distance. Note that in some instruction formats

such as MIPS ISA, certain fields (e.g., shamt) are rarely used by most instructions,

which may be exploited to encode the prefetching information without increasing the

width of the instruction set.

3.2 Compiler Support
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With the support of instruction prefetching in the ISA, the compiler’s job is to first

call the static cache simulation [Arnold et al. 1994; Healy et al. 1995] to obtain the

instruction categorization information. Then for each “always miss” instruction, a

prefetching instruction (by specifying the instruction prefetching address field) is

inserted in the appropriate place to boost worst-case performance. It should be noted

that it is always safe to insert the prefetching instructions into the program, since

they will not change the state of the machine, but to either increase or decrease

performance. As aforementioned, in this work, the compiler simply inserts the

prefetching instructions within the same basic block to guarantee that they will be

definitely executed to improve the worst-case performance, regardless of the runtime

control flow1. Therefore, the prefetching distance of the WCEToriented approach can

be calculated by using Equation 1, in which MP represents the L1 instruction miss

penalty, Ip denotes an instruction that needs to be prefetched (i.e., an “always miss”,

“first miss” or “first hit” instruction), and If stands for the first instruction in this

basic block whose instruction prefetching address field is available2.

As we can see in Equation 1, the prefetching distance of the WCET-oriented

prefetching is the minimum of the L1 instruction cache miss penalty and the schedule

time difference between the prefetched instruction and the earliest instruction in this

basic block that can store the prefetching distance information. The reason is that

prefetching too early (i.e., beyond the L1 instruction cache miss penalty) is

unnecessary. And at the same time, the compiler attempts to insert the prefetching

instruction as early as possible to maximally reduce the miss latency for enhancing

1Note that while inserting the prefetching instructions across basic block boundaries may
lead to better WCET, but it may also result in either excessive prefetched instructions
inserted in all possible paths or the possibility that the WCET is not improved at all if the
prefetched instruction is not inserted on the worst-case path.
2It should be noted that in a large basic block, multiple instructions may need to be
prefetched; however, each static instruction in the basic block can only carry the prefetch-
ing information for one statically missed instruction.

Table I. Configuration parameters and their values of the base VLIW processor.

Configuration Parameters Values

Processor

Functional Units 2 integer FUs

2 floating-point FUs

1 load/store unit

1 branch unit

Register File 16 global registers

Cache and Memory Hierarchy

L1 Instruction Cache 512 bytes, direct-mapped

8 byte blocks, 1 cycle latency

L1 Data Cache perfect

Memory 8 cycle, unlimited size



65 Yiqiang Ding, Jun Yan and Wei Zhang

Journal of Computing Science and Engineering, Vol. 3, No. 1, March 2009

the WCET.

PD = min(MP, sched(Ip) − sched(If )) (1)

For instructions that are categorized as “first miss” and “first hit”, we propose to

use loop peeling [Muchnic 1997] to peel the first loop iteration. More specifically, for

“first miss” instructions, prefetching instructions are only inserted for the first loop

iteration after loop peeling. This is because for the rest of the loop, this “first miss”

instruction is guaranteed to be always hits. In contrast, for “first hit” instructions, the

compiler will insert prefetching instructions for the remaining of the loop iterations,

except the first one.

4. EVALUATION METHODOLOGY

We study both the worst-case and average-case performance of different instruction

prefetching techniques on a HPL-PD [Kathail et al. 2000] based VLIW processor by

using Trimaran compiler/simulator infrastructure. We have modified the backend

compiler Elcor and the VLIW simulator to support the Next-N-Line prefetching, the

loop-directed prefetching and the WCET-oriented prefetching. The WCET analyses of

these instruction prefetching techniques are based on the prior work in [Yan and

Zhang 2007], which are implemented as independent modules in Elcor to report the

worst-case performance. The average-case performance is obtained by using the

VLIWsimulator in the Trimaran framework. The important parameters of the baseline

VLIWprocessor are given in Table I. Note that to limit the scope of this study, we

assume a perfect data cache (although our work is independent of the data cache)

which is also presumed in [Yan and Zhang 2007].

We select six benchmarks from the SNU real-time benchmark suite for the

evaluation. All the benchmarks are compiled by using the Trimaran compiler. The

salient characteristics of the benchmarks are given in Table II.

5. EXPERIMENTAL RESULTS

5.1 Worst-Case Performance Results

Figure 2 compares the worst-case performance of the Next-N-Line prefetching, the

loopdirected prefetching and the WCET-oriented prefetching with the prefetching

Table II. The salient characteristics of the selected Malardalen real-time benchmarks.

Benchmark Description Static Instrs access misses Miss Rate

Bmm multiplies two matrices 552 101157 293 0.29%

Fib mem Computes a Fibonacci number 

using a linear recurrence 

93 237 41 17.30%

Nested Sum up the elements in a two-

dimensional array 

120 2860 76 2.66%

Fibcall Fibonacci series function 43 208 25 12.02%

Ludcmp LU decomposition algorithm 265 3799 360 9.48%

Matmul Matrix multiplication 186 2838 58 2.04%
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distance varied from 2 to 4, 8 and 16, which are normalized with the WCET of the

base scheme that does not use any instruction prefetching. We use NLP-i (or LP-i) to

represent the Next-N-Line prefetching (or loop-directed prefetching) with a prefetching

distance i. As shown in Figure 2, the NLP, LP and WCET-oriented prefetching

schemes improve the worstcase performance in most cases, except when the

prefetching distance is too large (e.g., NLP-16 and LP-16 for Fibcall), which turns

out to be harmful for WCET. In particular, both the NLP and LP schemes are

successful for benchmarks having more instruction caches misses, for instance

Fib mem and Fibcall, whose I-cache miss rates are 17.3% and 12.02% respectively

as given in Table II. Also, we observe that the WCET-oriented prefetching is very

effective at improving the worst-case performance. Actually, except Nested and

Fibcall, the WCET-oriented prefetching outperforms both the Next-NLine prefetching

and the loop-based prefetching for all the different prefetching distances. On average,

the WCET-oriented prefetching is better than both the Next-N-Line prefetching and

the loop-based prefetching with different prefetching distances, except the LP-8

scheme, which can achieve the best WCET with the prefetching distance equal to the

L1 miss penalty.

For the NLP and LP schemes, we observe that when the prefetching distance

increases from 0 (i.e., base) to 2 and 4, the number of worst-case execution cycles is

reduced. However, we also observe that when the prefetching distance increases

beyond 4 (or 8), the Next-N-Line prefetching (or the loop-directed prefetching) results

in worse WCET, because of the aggravated instruction cache pollution. By comparing

the NLP scheme with the LP scheme with the same prefetching distance, we observe

that the loop-directed prefetching is always superior to the Next-N-Line prefetching.

The reason is that the LP scheme can reduce cache pollution caused by excessively

prefetched instructions outside loops through prefetching the right instructions to

support loop execution. Specifically, the best loop-directed prefetching scheme (i.e.,

LP-8) can reduce the base WCET by 21.7% on average, which is 3.4% more than that

Figure 2. Normalized worst-case execution cycles for different prefetching schemes with the

prefetching distance varied from 2 to 4, 8 and 16, which are normalized with the worst-case execu-

tion cycles of the Base (without instruction prefetching).
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of the best Next-N-Line prefetching scheme (i.e., NLP-4). In contrast to both NLP and

LP schemes, whose performance is heavily dependent on tuning the prefetching

distance, the WCET-oriented prefetching is independent of the prefetching distance,

which can still attain the best WCET for most benchmarks.

5.2 Average-Case Performance Results

Besides the worst-case performance, we also comparatively study the average-case

performance of different prefetching schemes by using the simulator. Figure 3 compares

the simulated execution cycles of the NLP and LP schemes of different prefetching

distances, as well as the WCET-oriented prefetching, which are normalized with the

base execution cycles without instruction prefetching. Generally, we observe that for

both the NLP and LP schemes, the best average-case performance is achieved when

the prefetching distance is 2 (note Fibcall and Ludump are the two exceptions,

whose best performance results are achieved when the prefetching distance is 4).

These optimal average-case performance results are in contrast to the best WCET

that can only be attained with a larger prefetching distance (i.e., 4 for NLP and 8 for

LP), as demonstrated in Figure 2. The reason is that the WCET analyzer normally

has to conservatively estimate the benefits of prefetched instructions, while the

simulator can accurately measure the effects of cache pollution. 

In addition, we find that generally the WCET-oriented prefetching is not very

effective at improving the average-case performance, as compared to the best NLP

and LP schemes with the optimal prefetching distance. The reason is that both NLP

and LP will prefetch multiple instructions (i.e., the next N lines) according to the

runtime execution path, while the WCET-oriented prefetching only statically inserts

prefetching instructions based on the worst-case performance estimation, which may

be different from an average-case program behavior. Moreover, in this work, the

WCET-oriented prefetching is constrained to intra-block prefetching, which often

limits the scope of prefetching and according the performance improvement.

6. RELATED WORK

Much work on instruction prefetching has focused on improving the average-case

performance [Smith 1978; Chow et al. 2004; Smith 1982; Smith and Hsu 1992; Pierce

and Mudge 1996; Joseph and Grunwald 1997; Luk and Mowry 1998; Xia and

Torrellas 1996; Reinman et al. 1999; Srinivasan et al. 2001]. By comparison, only a

few studies have examined the impact of prefetching on the worst-case performance,

which is critical for real-time applications. Specifically, Lee et al. conducted the worst-

case timing analysis for a buffered prefetch scheme based on timing schema [Lee et

al. 1994], which basically replaces the instruction cache and thus is different from our

work. Batcher and Walker [Batcher and Walker 2006] proposed the interrupt

triggered software prefetching to reduce the number of cache misses due to inter-task

interferences. In contrast, this paper studies a loop-directed hardware prefetching and

a WCET-oriented software prefetching to enhance the worst-case performance for a

single task. Chen et al. [Chen et al. 2001] described an example of cache analysis with

instruction prefetching as part of a retargetable timing analysis tool; however, no
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quantitative worst-case performance results are provided in [Chen et al. 2001].

As aforementioned, the closely related work to this paper is [Yan and Zhang 2007],

which extensively investigates the impact of the Next-N-Line instruction prefetching

on the worst-case execution time. Built upon the prior work in [Yan and Zhang 2007],

this paper proposes the loop-directed prefetching and WCET-oriented prefetching,

which can achieve better worst-case performance than the Next-N-Line prefetcher,

and thus are preferable for real-time applications.

There are also many related works in worst-case execution time analysis for cache

memories. Healy et al. studied static cache simulation for analyzing timing behavior

of instruction caches accurately [Arnold et al. 1994], which was then integrated with

pipeline analysis to derive WCET [Healy et al. 1995]. Mueller studied the use of the

static cache analysis to set-associative caches [Mueller 1997]. Li and Malik proposed

an integer linear programming based approach to computing WCET bounds of

programs on processors with pipelines and caches [Li and Malik 1995; Li et al. 1995].

Ferdinand andWilhelm proposed persistence analysis to estimate the WCET of data

caches [Ferdinand and Wilhelm 1998]. Ramaprasad and Mueller exploited the cache

miss equations (CME) framework to accurately predict the data cache timing behavior

for scalar and non-scalar references whose reference patterns are known at the

compilation time [Ramaprasad and Mueller 2005]. Staschulat et al. studied input

dependent WCET analysis for data caches [Staschulat and Ernst 2006]. Hardy and

Puaut examined worst-case performance analysis for multi-level non-inclusive set-

associative instruction caches. Currently, there are also some commercial WCET

analysis tools available, such as aiT. A good summary of contributions in the area of

WCET analysis can be found in [Wilhelm et al. 2008]. 

7. CONCLUDING REMARKS

Built upon prior work on [Yan and Zhang 2007], this paper studies both loop-based

instruction prefetching and WCET-oriented instruction prefetching that specifically

Figure 3. Normalized execution cycles for different prefetching schemes with the prefetching dis-

tance varied from 2 to 4, 8 and 16, which are normalized with the base execution cycles without

instruction prefetching.
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aims at improving the worst-case performance for real-time applications. Compared

with the Next-NLine prefetching [Smith 1978; 1982] that is designed for enhancing

the average-case performance, the loop-directed approach can not only relieve cache

pollution by not prefetching instructions after the loop branches, but also boosts

performance by prefetching the right instructions during the loop execution. On the

other hand, the WCET-oriented prefetching is a pure software-based approach that is

fundamentally different from the hardware-based Next-N-Line prefetching [Smith

1978; 1982]. The idea of the WCET-oriented prefetching is to exploit the worst-case

instruction cache categorization information to efficiently prefetch instructions for

reducing WCET.

Our experiments indicate that the WCET-oriented prefetching can attain better

WCET than both the Next-N-Line prefetching and most of the loop-based prefetching

schemes with various prefetching distances. However, the WCET-oriented prefetching

is less effective at improving the average-case performance, as compared to the worst-

case performance, because it is specifically designed for prefetching the missed

instructions in the worst-case, which is usually different from the average-case behavior.

Moreover, we find that the loop-directed prefetching outperforms the Next-N-Line

prefetching in both the worst-case and the average-case performance. We believe both

the loop-based and WCET-oriented prefetching techniques provide interesting design

options for real-time applications to boost the worst-case performance.

In our future work, we would like to further enhance the WCET-oriented instruction

prefetching by analyzing the worst-case path to support instruction prefetching across

basic blocks without significantly increasing the number of prefetched instructions.

Also, it is possible to combine the loop-based and WCET-oriented prefetching

approaches to obtain better WCET and energy efficiency for real-time applications.
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