
Journal of Computing Science and Engineering, Vol. 3, No. 2, June 2009, Pages 73-87.

Ensuring Sound Numerical Simulation

of Hybrid Automata

Yerang Hur

Department of Computer and Information Science, University of Pennsylvania, USA

yehur@posdata-usa.com

Jae-Hwan Sim

Department of Computer Science and Engineering, Korea University, Korea

jhsim@formal.korea.ac.kr

Jesung Kim

Department of Computer and Information Science, University of Pennsylvania, USA

jesung.kim@mathworks.com

Jin-Young Choi†

Department of Computer Science and Engineering, Korea University, Korea

choi@formal.korea.ac.kr

Received 24 November 2008; Accepted 24 June 2009

A hybrid system is a dynamical system in which states can be changed continuously and
discretely. Simulation based on numerical methods is the widely used technique for analyzing
complicated hybrid systems. Numerical simulation of hybrid systems, however, is subject to two
types of numerical errors: truncation error and round-off error. The effect of such errors can
make an impossible transition step to become possible during simulation, and thus, to generate
a simulation behavior that is not allowed by the model. The possibility of an incorrect
simulation behavior reduces con.dence in simulation-based analysis since it is impossible to
know whether a particular simulation trace is allowed by the model or not. To address this
problem, we define the notion of Instrumented Hybrid Automata (IHA), which considers the
effect of accumulated numerical errors on discrete transition steps. We then show how to
convert Hybrid Automata (HA) to IHA and prove that every simulation behavior of IHA
preserves the discrete transition steps of some behavior in HA; that is, simulation of IHA is
sound with respect to HA.

†: corresponding author

Copyright(c)2009 by The Korean Institute of Information Scientists and Engineers (KIISE).

Permission to make digital or hard copies of part or all of this work for personal or classroom use

is granted without fee provided that copies are not made or distributed for profit or commercial

advantage and that copies bear this notice and the full citation on the first page. Permission to

post author-prepared versions of the work on author's personal web pages or on the noncommercial

servers of their employer is granted without fee provided that the KIISE citation and notice of the

copyright are included. Copyrights for components of this work owned by authors other than

KIISE must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to

post on servers, or to redistribute to lists, requires an explicit prior permission and/or a fee.

Request permission to republish from: JCSE Editorial Office, KIISE. FAX +82 2 521 1352 or email

office@kiise.org. The Office must receive a signed hard copy of the Copyright form.

74 Yerang Hur et al.

Journal of Computing Science and Engineering, Vol. 3, No. 2, June 2009

Categories and Subject Descriptors: Real-Time Systems [Systems & Architecture]

General Terms: Hybrid Systems, Hybrid Automata

Additional Key Words and Phrases: Numerical Simulation, Numerical Errors, Alternating
Runs, Instrumented Hybrid Automata

1. INTRODUCTION

Hybrid systems are extended finite state machines with continuous dynamics. There

are many embedded system applications that can be modeled as hybrid systems, such

as automotive systems, avionic systems, coordinated robot systems, and medical

devices. For example, in a coordinated robot navigation system, the system controls

the collection of robots using one set of control laws until an obstacle is detected.

When a robot detects an obstacle, a different set of control laws is used to avoid the

obstacle [Fierro et al. 2002].

When developing a complex embedded system, it is common to model it as a hybrid

system and analyze it before implementation. The most commonly used analysis

technique for hybrid systems is to simulate using numerical methods [Chutinan and

Krogh 2003; Hickey and Wittenberg 2004; Henzinger et al. 2000]. During simulation,

one is concerned with whether or not good or bad states are reachable from an initial

state. However, it is well known that numerical errors, such as truncation and round-

off errors, due to numerical computation with a finite precision can cause impossible

transitions of the model to occur during simulation [Gear 1971; Jain 1979; Press et

al. 1999; Abate et al. 2006; Donzé and Maler 2007].

This paper presents a framework in which such erroneous transitions can be

prevented during simulation. Our framework, called Instrumented Hybrid Automata

(IHA), guarantees that all discrete transitions taken are exactly those allowed in the

original model. Contrast to the approach described in this paper, other researchers

have developed related, but different, techniques. In HyTech+ [Henzinger et al. 2000]

and CheckMate [Chutinan and Krogh 2003], techniques use interval numerical

method and overapproximation respectively. Although interval method can avoid

round-off error and guarantee true solution within validated bounds, such bound may

be unacceptably wide in the worst case, and overapproximation cannot avoid

numerical error completely. Also, they have restriction. For example, HyTech does not

allow ODEs (Ordinary Differential Equations) which can specify continuous physical

systems, and CheckMate can only use restricted Hybrid Automata which is subclass

of Hybrid Automata. Another techniques research aspect of correctness by focusing on

how to avoid missing events that trigger discrete transitions during simulation

[Esposito et al. 2001; Park and Barton 1996; Abate et al. 2006], but they are different

from our approach.

The rest of the paper is organized as follows: We start with defining a variation of

hybrid automata in Section 2. Our definition is similar to [Chutinan 1999; Lafferriere

et al. 1999] among the class of hybrid automata [Alur et al. 1995; Chutinan 1999;

Lafferriere et al. 1999; Lynch et al. 1995; Henzinger 1996]. We define the notion of

alternating run of hybrid automata. Section 3 describes the effect of numerical errors

and proposes a formal way of instrumenting the original model to limit the effect of

Ensuring Sound Numerical Simulation of Hybrid Automata 75

Journal of Computing Science and Engineering, Vol. 3, No. 2, June 2009

numerical errors. We consider only truncation errors in this paper. Then, we prove

that every alternating run of an instrumented hybrid automaton is always safe with

respect to the original hybrid automaton. Section 4 concludes the paper and discusses

future work.

2. HYBRID AUTOMATA

This section defines a hybrid automaton as an extension of the timed automaton [Alur

and Dill 1994] to include continuous dynamics in addition to discrete transitions.

Among many notions of hybrid automaton [Alur et al. 1995; Chutinan 1999; Lafferriere

et al. 1999; Lynch et al. 1995], our definition is most close to the one given in [Chutinan

1999].

Definition 1. (HA). A hybrid automaton, HA, is a tuple A = (P, VC, p0, F, E, I, G,

R, INIT), where

− P is a finite set of distinct positions,

− VC is a finite set of continuous real variables, where |VC| = n,

− p0 ∈ P is the initial position,

− F : P → F assigns to p ∈ P an n-dimensional vector field F(p) ∈ F : Rn → R
n,

which defines ordinary differential equations satisfying the assumptions for existence

and uniqueness of solutions for all variables in VC,

− E ⊆ P × P is a finite set of discrete transitions,

− I : P → (2
R
)n assigns the invariant interval to p ∈ P such that I(p) ∈ (2

R
)n and, for

all x ∈ VC, we denote the invariant interval of x at the position p by Ix(p),

− G : E → (2
R
)n assigns to (p1, p2) ∈ E the guard interval such that for all x ∈ VC,

Gx((p1, p2)) ∩ Ix(p1) ≠ ∅, where Gx((p1, p2)) denotes the guard interval of x,

− R : E × VC → R assigns a reset value R((p1, p2), x) ∈ Ix(p2) to a pair (p1,p2) ∈ E

and x ∈ VC, and

− INIT : VC → R assigns to a variable the initial value satisfying INIT (x) ∈ Ix(p0),

for all x ∈ VC.

In the rest of the paper, we denote P of A by PA. Likewise, we use VCA, , FA, EA,

IA, GA, RA, and INITA to denote VC, p0, F, E, I, G, R, and INIT of A, respectively. For

all x ∈ VCA, the invariant and the guard intervals of x are denoted by IA,x and GA,x,

respectively. When it is clear, we omit A. Figure 1 is a simple example of HA called

Boo with two positions p0 and p1 and one continuous variable x of which dynamics at

p0 and p1 are = 1 and = −1, respectively. The discrete transition EBoo is {(p0, p1)},

the invariant intervals IBoo,x(p0) = [0, 2] and IBoo,x(p1) = (− ,), the guard interval

p0

A

x· x·

∞ ∞

Figure 1. Hybrid Automaton Boo.

76 Yerang Hur et al.

Journal of Computing Science and Engineering, Vol. 3, No. 2, June 2009

GBoo,x((p0, p1)) = (− , 3], the reset value RBoo((p0, p1),x) = 0, and the initial value of x,

INITBoo(x) = 0.

Definition 2. (State of an HA). Given an HA A, a (time-stamped) state s = (p, u, t)

is an element of PA × R
n × R satisfying the following condition: at time t, for all

x ∈ VC, u(x) ∈ Ix(p), where u(x) is the valuation of x.

A state (p, u, t) means that at time t the system is at the position p with the valuation

u. When a state si = (pi, ui, ti) is given, we use si|p, si|u, si|t to denote pi,ui,ti,

respectively. In addition, we use u ∈ IA(p) if u(x) ∈ IA,x(p) for all x ∈ VC, and

u ∈ GA((p1, p2)) if u(x) ∈ GA,x((p1, p2)) for all x ∈ VC.

Definition 3. (Discrete transition step of an HA). Given an HA A, a pair of states

(si,sj) is called a discrete transition step if the following conditions are satisfied:

− si|t = sj|t,

− (si|p, sj|p) ∈ EA,

− si|u ∈ IA(si|p),

− si|u ∈ GA((si|p, sj|p)), and

− sj|u(x) = RA((si|p, sj|p),x), for all x ∈ VC.

A discrete transition is of the form (pm, pn), i.e., a directed edge from the node pm to

the node pn, whereas a discrete transition step is (si,sj) defined in Deffnition 3. We say

that a discrete transition e = (p1,p2) ∈ EA becomes enabled in p1, if GA((p1, p2)) is true,

and e is legitimate if its reset action satisfies the condition RA((p1, p2), x) ∈ IA,x(p2), for

all x ∈ VCA. A discrete transition must be both enabled and legitimate for it to be

taken.

Definition 4. (Continuous transition step of an HA). Given an HA A, a pair of states

∞

Figure 2. Thermostat: Hybrid Automaton Therm.

Ensuring Sound Numerical Simulation of Hybrid Automata 77

Journal of Computing Science and Engineering, Vol. 3, No. 2, June 2009

(si,sj) is called a continuous transition step if the following conditions are satisfied:

− si|t < sj|t,

− si|p = sj|p, and

− sj|u is the solution of the initial value problem of the ordinary differential equation,

where continuous dynamics is given by the vector field F (si|p) and the initial value

is si|u at time si|t.

The continuous transition step corresponds to the continuous flow at the position p

with the dynamics specified by F (p) from time ti to time tj. We use a term transition

step to refer to both a discrete transition step and a continuous transition step.

Definition 5. (Run of an HA). A run of an HA A is a finite or an infinite sequence

of states, where the following conditions are satisfied:

− s0 = (p0, INITA, 0),

− .∀i, si|t ≤ si+1|t,

− .if si|t = si+1|t, (si, si+1) is a discrete transition step at time si|t, and

− .if si|t < si+1|t, (si, si+1) is a continuous transition step at time si|t.

Figure 2 shows an example of an HA called Therm which is thermostat for

regulating temperature between 35 to 50 degrees. We will denote heating position by

p0, cooling position by p1, and checking position by p2. Therm start at the position p0

and taking a discrete transition (p0, p1) at some time while the guard is true. This is

a pedagogical example to show the effect of numerical errors. In Therm, the transition

(p0, p2) cannot occur, since the guard G(p0, p2) is always false. Therm consists of two

continuous variables and three positions with dynamics of each position described by

Equations (1), (2), and (3):

position p0 : = −4y + 8, = 1, x(0) = 42, y(0) = 0 (1)

position p1 : = −x, = 1, (2)

position p2 : = 0, = 0. (3)

HATS starts at the initial position p0 with dynamics of Equation (1) and the initial

values x(0) = 42 and y(0) = 0. If we solve Equation (1), we get x(t)= −2t2 + 8t + 42, y(t)

= t. During a run of Therm, the transition from a position p0 may be taken at any time

if the following conditions satisfied: the guard of an edge is true, its reset assigns

legitimate values, and the invariant of p0 is not violated. Note that the transition

(p0, p2) is not supposed to occur in the HA Therm, because the maximum value of x

at the position p0 is 50.

Definition 6. (Model of an HA). For a given HA A, the set of all runs of A is called

the model of A.

Definition 7. (Alternating run of an HA). A run 〈s0, s1,...,si, si+1〉 of an HA A is

called an alternating run if it satisfies the following conditions: for all i ≥ 0,

− if (si, si+1) is a discrete transition step, then (si+1, si+2) is a continuous transition

x· y·

x· y·

x· y·

78 Yerang Hur et al.

Journal of Computing Science and Engineering, Vol. 3, No. 2, June 2009

step.

− if (si, si+1) is a continuous transition step, then (si+1, si+2) is a discrete transition step.

3. INSTRUMENTED HYBRID AUTOMATA

In this section, we briefly overview numerical methods and identify the possible

sources of numerical errors. Then, we explain how the numerical errors can cause an

unexpected discrete transition to occur during simulation. To formalize the effect of

numerical errors during simulation of an HA, we propose the formalism called

Instrumented Hybrid Automata (IHA). We show that the alternating run of the IHA

trace is always included in that of the HA trace. Thus, the IHA provides only correct

simulation results with regard to alternating runs of the original model.

3.1 Numerical Methods

To make the presentation concrete, we assume that the numerical methods used for

initial value problems of ODEs are Runge-Kutta methods, which include Euler’s

method1. Given initial values and a start time, Runge-Kutta (RK) methods compute

a solution over an interval of time period by combining intermediate values from

Euler-style steps based on a Taylor series expansion up to some degree of orders.

To identify the possible sources of numerical errors, we briefly explain Euler’s

method and the classical fourth-order RK method (for details see [Gear 1971; Press

et al. 1999]). Euler’s method is the simplest method computing the approximate

solution of differential equation of the form:

. (4)

Assuming f (t0, x0) will remain as a constant from t0 to t1, the value of x1 at t1 is

computed using the following equation:

x1 − x0 = f (t0, x0)(t1 − t0). (5)

Thus, x1 = x0 + hf (t0, x0), where h is the integration stepsize. In general, Euler’s

method computes:

xi+1 = xi + hf (ti, xi), where i = 0, 1, 2, …. (6)

Most scientific applications, however, require a higher accuracy than Euler’s

method provides. A common technique is to use a fourth-order RK method, which

combines the four intermediate evaluations of the function f. The fourth-order RK

method evaluates f (t, x) at different values of t and x four times and combine the

intermediate results to get an approximation of x at time ti+1.

3.2 Numerical Errors

The numerical errors of RK methods are of the two types: the truncation error due to

truncations in Taylor series expansions and the round-off error due to a finite

precision of real numbers in the computer. Both the truncation error and the round-

off error are accumulated from the first integration to the final integration. In the rest

x· = f t, x()

1Euler’s method is the first-order Runge-Kutta method.

Ensuring Sound Numerical Simulation of Hybrid Automata 79

Journal of Computing Science and Engineering, Vol. 3, No. 2, June 2009

of the paper, we call the accumulated truncation error global truncation error to

distinguish from the local truncation error referring to the truncation error in a single

integration step. Unless the size of h becomes very small, local and global truncation

errors are the sources of dominant numerical errors. Note that truncation errors exist

even if an infinite precision arithmetic is used since they originate from the truncation

of the infinite Taylor expansion.

Euler’s method or Taylor series expanded up to the second term is represented as

x(t+h) = x(t)+h (t)+O(h2), where x(t+h) = xi+1, x(t) = xi, and (t) = f(ti, xi). Therefore,

the local truncation error becomes O(h2); that is, the local truncation error of Euler’s

method is the second order of h. In general, a k-th order RK method is derived from

the Taylor series expansion of the form

xi+1 = xi + hf(ti, xi) + h2 + …

+ hk , where k > 1. (7)

In Equation (6), the local truncation error is O(hk+1).

We use the example presented in Figure 2 to show why we need to instrument a

given HA to ensure that the numerical simulation follows transitions possible in the

HA.

Table I shows how the global error affects the simulation of HA Therm. In the table,

h is 0.001, x denotes the exact value and xEuler represents the value computed by

Euler’s method. At all positions of Therm, we used the same numerical method and

stepsize. The relative global error is denoted by Eg.

In any run of HA Therm, the transition from p0 to p2 cannot happen since the guard

of GTherm((p0, p2)) is x > 50. The maximum value of x at the position p0 is 50. However,

even with a small global error of 0.0008%, the guard becomes true and thus, the

simulator can show the run reaching the position p2 at any time [1.956, 2.045]. Also,

Table II shows simulation result which uses RK method in order to acquire high

accuracy. In case of RK, similar to Euler’s method, the simulator can show the run

x· x·

1

2!

df ti,xi()
dt

⎝ ⎠
⎛ ⎞

1

k!

df
k 1–

ti,xi()

dt
k 1–

⎝ ⎠
⎜ ⎟
⎛ ⎞

 + O h
k 1+()

Table I. The Affect of Numerical Errors of Euler’s Method.

t x xEuler Eg : (xEuler − x)/x

1.955 49.995950 49.999860 0.008%

1.956 49.996128 50.000040 0.008%

1.957 49.996302 50.000216 0.008%

… … … …

2.000 50.000000 50.004000 0.008%

… … … …

2.044 49.996128 50.000216 0.008%

2.045 49.995950 50.000040 0.008%

2.046 49.995768 49.999860 0.008%

80 Yerang Hur et al.

Journal of Computing Science and Engineering, Vol. 3, No. 2, June 2009

reaching the position p2 at t = 2.000. In addition, we make sure of same simulation

result in Simulink ODE1 and ODE4 solver. Therefore, Incorrect simulation can be

generate in most case which use numerical methods.

For these reason, we need to provide a safe way of simulating HA using the notion

of Instrumented Hybrid Automaton (IHA).

3.3 The Bound of the Local Truncation Error

Let N(p) and h(p) denote the numerical method and the integration stepsize at the

position p, respectively. Also, let δx(N(p), h(p), Tf, F(p), VC, INIT) denote the bound

of the maximum local truncation error when x is integrated using a numerical

program N(p) with a stepsize h(p) from time 0 to Tf, where x ∈ VC and its dynamics

is defined by F(p)(x).

If N(p) is a k-th order RK method, then δx(N(p), h(p), Tf , F(p), VC, INIT) can be

computed using the (k+2)-th term of the Taylor expansion of x(t + h(p)) at x(t). To see

it, if N(p) is Euler’s method, use the Taylor expansion of x(t + h(p)) = x(t) + h(p) f(t, x)

+ h2(p) f'(, x), for some t < < t + h(p). Then, the local truncation error at time t

+ h(p) is |x(t + h(p)) − x(t) − h(p) f(t, x)|. If there exists K such that |x(t + h(p)) − x(t)

− h(p) f(t, x)|

≤ Kh2(p) for all 0 ≤ t

≤ Tf , δx is Kh2(p).

3.4 The Bound of the Global Truncation Error

Let en(x) and En(x) denote the local truncation error and the global trunca tion error

of x in n-th integration step, respectively. Then, |En+1(x)| is bounded in |En(x)| + L·

h·|En(x)|+|en+1(x)|, where L is the Lipschitz constant and h is the fixed integration

stepsize. Namely, |En(x)| ≤ ((1 + L·h(p))n − 1)·(the bound of local truncation error of

x)/(L·h(p)). As the maximum local trun cation during numerical integration of x from

time 0 to Tf using the numerical program N(p) and the stepsize h(p), is bounded in

δx(N(p), h(p), Tf , F(p), VC, INIT), we get the following inequality.

|En(x)| ≤ ((1 + L · h(p))n − 1) · δx/(L · h(p)). (8)

We know 1+(Lh) ≤ 1+(Lh) + (Lh)2 + (Lh)3 + … = e(Lh). Thus, (1+(Lh))n
≤ e(Lhn)

and Equation (7) becomes

|En(x)| ≤ (eLTf − 1) · δx/(L · h(p)). (9)

In the rest of the paper, given an interval b, we use l(b) and r(b) to denote the lower

1

2!
----- t̂ t̂

1

2!

1

3!

Table II. The Affect of Numerical Errors of RK Classic Method

t x xEuler Eg : (xRK − x)/x

1.998 49.999992 49.999992 0%

1.999 49.999996 50.000000 0.000008%

2.000 50.000000 50.000004 0.000008%

2.001 49.999996 50.000000 0.000008%

2.002 49.999992 49.999992 0%

Ensuring Sound Numerical Simulation of Hybrid Automata 81

Journal of Computing Science and Engineering, Vol. 3, No. 2, June 2009

and the upper bounds of b, respectively. An interval b can be open on either or both

sides; so, b can be (l(b), r(b)), (l(b), r(b)], [l(b), r(b)), or [l(b), r(b)]. For arithmetic

operations with l(b) and r(b), we assume that ∞ ± x = ∞ for any real x.

Definition 8. (IHA). We assume that the HA is simulated for up to time Tf . So, the

local truncation error can be accumulated only from time 0 to Tf . Given an HA A, an

instrumented hybrid automaton of A, called IHA, is defined as a tuple B = (A, N, h,

Tf), where

− N : PA → P ROG assigns to p ∈ PA a numerical method program with a stepsize

h(p),

− h : PA → R+ assigns to p ∈ PA a stepsize h(p),

− Tf is final time of the interval for which B runs,

− given A, N, h, and Tf , we compute β at the position p as follows:

,

,

. (10)

− for each p ∈ PA and the invariant interval IA,x(p), l(IB,x(p)) = l(IA,x(p)) + β, r(IB,x(p))

= r(IA,x(p)) − β, for all x ∈ VCA, and

− for each e ∈ EA and the guard interval GA,x(e), l(GB,x(e)) = l(GA,x(e)) + β, r(GB,x(e)) =

r(GA,x(e)) − β, for all x ∈ VCA.

In general, checking numerically whether an invariant is violated or not can be

reduced to a numerical event detection problem. That is, we can detect an invariant

violation using various numerical event detection algorithms. However, if the

dynamics of an HA changes rapidly during the smallest stepsize h(p), the occurrence

of such an event cannot be detected. This can be true if there are also multiple

occurrences of the event during the stepsize. For the problem of an event detection,

refer to the articles [Esposito et al. 2001; Park and Barton 1996]. To exclude such an

intractable HA, we define the term h-insensitive hybrid automata to denote the class

of HA without such behavior. Our main theorem provided later is on the soundness

of IHA for h-insensitive HA.

Definition 9. (h-insensitive HA). Given an HA A, let B = (A, N, h, Tf) be an IHA,

then the invariant IA,x(p) is called hB(p)-insensitive if, for some t' such that t < t' ≤ t +

hB(p), the value of x at time t' is not in IA,x(p) then for any t'' ∈ [t',t + hB(p)] the value

of x at t'' is not in IA,x(p), where t = 0, hB(p), 2·hB(p), ..., ·hB(p). When all

invariants in HA A are hB-insensitive, we call A hB-insensitive HA.

There are two major factors for simulating hybrid automata correctly: event

detection and numerical errors. Since this paper focuses on the effect of numerical

errors during simulation of hybrid automata, HA given in this paper is always

assumed to be hB-insensitive. By assuming hB-insensitivity of hybrid automata, we

can guarantee that there is no invariant violation during a time interval of which

start and end points satisfy the invariant condition as stated below.

v∀ VCA∈ , p PA∈∀

βp x, = e
LTf

1–() δx/ L h p()⋅()⋅

β = max βp x,()

Tf /hB p()

82 Yerang Hur et al.

Journal of Computing Science and Engineering, Vol. 3, No. 2, June 2009

Lemma 1. Given an HA A, let B = (A, N, h, Tf) be an IHA, if A is hB-insensitive and

the both values of x at time t and t + hB(p) are in IA,x(p), then the value of x at t ∈ [t,

t + hB(p)] is always in IA,x(p).

Proof. Immediately followed by Definition 9.

After translating an HA A into its IHA B, the numbers of positions and transitions

in an instrumented hybrid automaton can be different from those in a given hybrid

automaton. That is, if we view the positions and transitions of HA A as a directed

graph, IHA B is not necessarily isomorphic to a given HA A. If for some x ∈ VCA,

l(IB,x(pi)) > r(IB,x(pi)), then the invariant of pi can never be satisfied, and thus, the

position pi is removed. Also, there are two cases, called disabled and illegitimate, in

which a transition can never be taken. We say that the transition (pi, pj) is disabled

if for some x ∈ VCA, l(GB,x((pi, pj))) > r(IB,x(pi)). We say that the transition (pi, pj) is

illegitimate if for some x ∈ VCA, RB((pi, pj), x) /IB,x(pj). We delete every transition that

is disabled or illegitimate. Also, if all the outgoing edges of pi disappear, we eliminate

pi in the IHA B.

Figure 3 shows an instrumented version of HA Therm. To instrument the HA

Therm, we first compute, , , and . If we use Euler’s method for t ∈ [0,3.0]

with the integration stepsize 0.001, then = |2h2(p0) × | = 0.006. Likewise,

we get = |(e3.0 − 1) × e3.0 × h = 0.192 and = 0. Therefore, β is max(, ,

) = 0.192. In HA Therm, we have found that the guard of GTherm((p0, p2)) becomes

x > 50 by numerical error. Therefore, that faulty transition was caused. In IHA

Therm, however, we can guarantee sound simulation because the guard of GTherm((p0,

p2)) becomes x > 50 + β = 50.192.

The definitions of state and discrete transition step for IHA are the same as the

definitions in Section 2.

Definition 10. (Continuous transition step of an IHA). Given an IHA B, a pair of

states (si, sj) is called a unit continuous transition step if the following conditions are

satisfied:

 ∉

βp
0

βp
1

βp
2

βp
0

Tf /h p0()
βp

1

h P2()

2
-------------- βp

2
βp

0
βp

1

βp
2

Figure 3. Instrumented Hybrid Automaton of Thermostat IHAT .

Ensuring Sound Numerical Simulation of Hybrid Automata 83

Journal of Computing Science and Engineering, Vol. 3, No. 2, June 2009

− sj|t = si|t + h(si|p),

− si|p = sj|p,

− for all i, j, si|u, sj|u ∈ IA(si|p), and

− for all x ∈ VC, sj|u(x) is computed with N(sj|p), h(sj|p), and si|u(x).

When 〈(si, si+1), (si+1, si+2),..., (sj−1, sj)〉 is a sequence of unit continuous transition steps,

we say that (si, sj) is a continuous transition step. When it is clear, a unit continuous

transition step is also called a continuous transition step.

Definition 11. (Run of an IHA). Given an HA A, a run of the IHA B is a finite

sequence of states, 〈s0, s1,..., si, si+1,..., sm〉, such that

− sm|t ≤ Tf ,

− s0 = (p0, INITA, 0),

− for all i ≥ 0, si+1|t is either si|t or si|t + h(si|p),

− if si+1|t = si|t, (si, si+1) is a discrete transition step at time si|t, and

− if si+1|t = si|t + h(si|p), (si, si+1) is a continuous transition step at time si|t.

Similar to the alternating run of an HA defined in Definition 7, we merge multiple

continuous transition steps into one continuous transition step, yielding the following

definition of the alternating run of an IHA. The alternating run of an IHA is a finite

sequence of states while that of an HA can be an infinite sequence.

Definition 12. (Alternating run of an IHA). The alternating run of IHA B, 〈s0,...,

si, si+1,..., sm〉, is defined by a sequence of states which satisfies the following conditions:

− for i = 1...m−2, if (si, si+1) is a discrete transition step, then (si+1, si+2) is a continuous

transition step and

− for i = 0...m−2, if (si, si+1) is a continuous transition step, then (si+1, si+2) is a discrete

transition step.

Lemma 2. Given an HA A, let B = (A, N, h, Tf) be an IHA and let sA and sB be the

states of A and B respectively, satisfying the conditions:

− sA|p = sB|p,

− sA|u(x) = sB|u(x) for all x∈ VC, and

− sA|t = sB|t .

For some s' B of B such that s' B|t = sB|t + c × h(sB|p) with some positive integer c if A

is hB-insensitive and (sB, s' B) is a continuous transition step, then there exists a

continuous transition step (sA, s' A) for some state s' A in A, which satisfies following

conditions:

(1) s' A|u(x) ∈ [s' B|u(x) − β, s' B|u(x) + β] for all x ∈ VC,

(2) s' A|u(x) ∈ Ix(s' A|p) for all x ∈ VC,

(3) s' A|p = s' B|p, and

(4) s' A|t = s' B|t.

84 Yerang Hur et al.

Journal of Computing Science and Engineering, Vol. 3, No. 2, June 2009

Proof. Let u be given by the solution of differential equations with the vector field

F (sA|p) at time sA|t + c × h(sA|p) and let the state (sA|p, u, sA|t + c × h(sA|p)) be s' A.

First, we show that the first condition is satisfied. Let x be a variable in VC. Since

the value s' B|u(x) is the result of numerical integration for c steps with the numerical

method N(sB|p), s' A|u(x) is bounded in s' B|u(x) ± β', where β' is the global error from

sB|t to s' B|t. By Definition 8 we know that β' ≤ β. Hence, we get |s' A|u(x) −

s' B|u(x)| ≤ β. Hence, −β ≤ s' A|u(x) − s' B|u(x) ≤ β, which yields that s' A|u(x) ∈ [s' B|u(x)

− β, s' B|u(x) + β]. We conclude, therefore, that s' A|u(x) ∈ [s' B|u(x) − β, s' B|u(x) + β] for

all x ∈ VC … (1).

Second, we show that the invariants are not violated. Let x be a variable in VC. We

know that s' B|u(x) ∈ [l(Ix(s
A|p)) + β, r(Ix(s

A|p)) − β], since the invariants are not

violated at time s' B|t. Using (1), we can get s' A|u(x) ∈ [l(Ix(s
A|p)), r(Ix(s

A|p))], that is,

s' A|u(x) ∈ Ix(s
A|p) … (2).

Third, we show that the positions are identical. Since s' B|p = sB|p and s' A|p = sA|p,

and by the given condition sB|p = sA|p, we have s' A|p = s' B|p … (3).

Fourth, we show that the points of time are identical. Since s' B|t = sB|t + c ×

h(sB|p), and sA|t = sB|t, we have s' A|t = c × h(sA|p). Note that sA|p = sB|p.

Therefore, s' A|t = s' B|t … (4).

Finally, since the HA A is hB-insensitive, we know that the value of x is in Ix(s
A|p),

for every t' ∈ [sA|t, s' A|t], by the conditions sA|u(x), s' A|u(x) ∈ Ix(s
A|p), and Lemma 1

… (5).

From (1), (2), (3), (4), and (5), we get the transition step (sA, s' A) is a continuous

transition step satisfying the conditions.

Lemma 3. Given an HA A, let B = (A, N, h, Tf) be an IHA and suppose there are

states sA and sB that satisfy the following conditions:

− sA|p = sB|p,

− sA|u(x) ∈ [sB|u(x) − β, sB|u(x) + β] for all x ∈ VC,

− sA|t = sB|t, and

− sB|u(x) ∈ Gx(s
B|p).

Then, for some state s' B of B, if (sB, s' B) is a discrete transition step then there exists

a discrete transition step (sA, s' A) for some state s' A in A, which satisfies the following

conditions:

(1) s' A|p = s' B|p,

(2) s' A|u(x) = s' B|u(x) for all x ∈ VC,

(3) s' A|t = s' B|t, and

(4) s' A|u(x) ∈ Ix(s' A|p) for all x ∈ VC.

Proof. Let eB be the edge such that eB = (p0, p1) in B, then since EB ⊆ EA, A has an

edge eA = (p0, p1) such that p0 = sB|p and p1 = s' B|p. It is easy to see that p0 = sA|p,

since sA|p = sB|p.

Let x be any variable such that sB|u(x) ∈ Gx(e
B). Then, since sB|u(x) ∈ Gx(e

B), we

have sB|u(x) ∈ [l(Gx(e
A)) + β, r(Gx(e

A)) − β]. Also, since sA|u(x) ∈ [sB|u(x) − β, sB|u(x) +

β], we know that sA|u(x) ∈ [l(Gx(e
A)) + β − β, r(Gx(e

A)) − β + β], which is sA|u(x) ∈

Ensuring Sound Numerical Simulation of Hybrid Automata 85

Journal of Computing Science and Engineering, Vol. 3, No. 2, June 2009

[l(Gx(e
A)), r(Gx(e

A))]. Hence, sA|u(x) ∈ Gx(e
A), meaning that the edge eA is enabled in the

state sA.

Since the reset conditions in eA are the same as those in eB, we know that after the

transition eB is taken the value of every x ∈ VC is identical to that of s' B|u(x). Let the

state s' A in A be (p1, s' A|u, sA|t). Then we have that s' A|p = s' B|p, since s' A|p = p1 =

s' B|p … (1). Also, we know that for all x ∈ VC, s' A
|u(x) = s' B|u(x) … (2). Furthermore,

s' A|t = s' B|t since s' A|t = sA|t = sB|t = s' B|t … (3).

Now we show that the invariant condition in s' A|p is not violated. By the invariant

condition in s' B|p, we know that s' B|u(x) ∈ Ix(s' B|p) for all x ∈ VC, which is, by

definition, s' B|u(x) ∈ [l(Ix(s' A|p)) + β, r(Ix(s' A|p)) − β] for all x ∈ VC. Hence, having

s' B|u(x) = s' A|u(x) for all x ∈ VC, s' A|u(x) ∈ [l(Ix(s' A|p)) + β, r(Ix(s' A|p)) − β] for all

x ∈ VC. Therefore, s' A|u(x) ∈ Ix(s' A|p) for all x ∈ VC … (4).

By (1), (2), (3), and (4), a discrete transition step (sA, s' A) exists and it satisfies the

conditions.

Theorem 1. Given an HA A, let B = (A, N, h, Tf) be an IHA, such that A is hB-

insensitive. Then, for every alternating run 〈 , ..., , ..., 〉, there exists an

alternating run 〈 , ..., , ..., 〉 of A such that for all 0

≤ i

≤ m, where |t ≤ Tf :

− |p = |p,

− |u(x) ∈ [|u(x) − β, |u(x) + β] for all x ∈ VCA, and

− |t = |t.

Proof. Immediately followed by Lemma 2 and Lemma 3.

4. CONCLUSION

This paper presented a method for taming the effect of numerical errors during

simulation of hybrid automaton. As illustrated in the paper, numerical errors can

result in allowing transitions that are not possible in the original model. Such

anomalies have been observed in simulation-based tools including Simulink/Stateflow.

The contribution of the paper is to identify the sources of numerical errors, to

determine bounds on them, to use the bounds for instrumenting the guards and

invariants of the original hybrid automaton so that impossible behavior cannot occur

during simulation. More specifically, with the definitions of state, run, and alternating

run of IHA, we show that the alternating run of IHA is always included in HA.

In this paper, we assume the error bounds are static and applied to the all states.

This results in rather pessimistic IHA. So, we are currently extending the approach

as follows. First, instead of using β, it should be possible to instrument guards and

invariants based on position-specific βp for each position p. Furthermore, it may be

possible to get a tighter βp for each position p if it determined during simulation.

Second, if we are given a bound on the largest allowable local error, the bound can

be used to determine the smallest k-th RK method that guarantees the bound. Third,

Theorem 1 captures soundness of IHA with respect to HA, using the notions of

soundness and completeness in logic [Gallier 1986]. It should be possible to achieve

a (relative) completeness of IHA by examining how the stepsize in.uences the runs of

s0
B

si
B

sm
B

s0
A

si
A

sm
A

sm
B

si
A

si
B

si
A

si
B

si
B

si
A

si
B

86 Yerang Hur et al.

Journal of Computing Science and Engineering, Vol. 3, No. 2, June 2009

IHA, and also our approach can be extended to sound code generation framework of

hybrid model, like [Hur et al. 2004].

ACKNOWLEDGMENT

This work was partially supported by the Engineering Research Center of Excellence

Program of Korea Ministry of Education, Science and Technology (MEST)/Korea

Science and Engineering Foundation (KOSEF), grant number R11-2008-007-03002-0.

REFERENCES

ABATE, A., A. AMES, AND S. SASTRY. 2006. Error bounds based stochastic approximations and

simulations of hybrid dynamical systems. American Control Conference, 2006, 6.

ALUR, R., C. COURCOUBETIS, N. HALBWACHS, T. A. HENZINGER, P.-H. HO, X. NICOLLIN, A.

OLIVERO, J. SIFAKIS, AND S. YOVINE. 1995. The algorithmic analysis of hybrid systems.

Theoretical Computer Science 138, 1 (Feb.), 3−34.

ALUR, R. AND D. L. DILL. 1994. A theory of timed automata. Theoretical Computer Science 126,

2, 183−235.

CHUTINAN, A. 1999. Hybrid system verification using discrete model approximations. Ph.D. thesis,

pages 11−13. Department of Electrical and Computer Engineering, Carnegie Mellon University.

CHUTINAN, A. AND B. KROGH. 2003. Computational techniques for hybrid system verification.

IEEE Transactions on Automatic Control 48, 1 (JANUARY), 64−75.

DONZE, A. AND O. MALER. 2007. Systematic simulation using sensitivity analysis. In HSCC. 174−

189.

ESPOSITO, J. M., V. KUMAR, AND G. J. PAPPAS. 2001. Accurate event detection for simulating

hybrid systems. In Hybrid Systems: Computation and Control, M. D. D. Benedetto and A. L.

Sangiovanni-Vincentelli, Eds. LNCS 2034. Springer, 204−217.

FIERRO, R. B., A. K. DAS, J. SPLETZER, Y. HUR, R. ALUR, J. M. ESPOSITO, G. Z. GRUDIC, V.

KUMAR, I. LEE, J. P. OSTROWSKI, G. J. PAPPAS, J. SOUTHALL, AND C. J. TAYLOR. 2002. A

framework and architecture for multirobot coordination. International Journal of Robotics

Research 10-11, 977−995.

GALLIER, J. H. 1986. Logic for computer science: Foundations of automatic theorem proving.

Harper & Row, New York, US.

GEAR, C. W. 1971. Numerical Initial Value Problems in Ordinary Differential Equations. Prentiec-

Hall, Englewood Cli.s, US.

HENZINGER, T. 1996. The theory of hybrid automata. In Proceedings of the 11th Annual

Symposium on Logic in Computer Science. IEEE Computer Society Press, 278−292.

HENZINGER, T. A., B. HOROWITZ, R. MAJUMDAR, AND H. WONG-TOI. 2000. Beyond HYTECH:

Hybrid systems analysis using interval numerical methods. In HSCC. 130−144.

HICKEY, T. J. AND D. K. WITTENBERG. 2004. Rigorous modeling of hybrid systems using interval

arithmetic constraints. In Hybrid Systems:Computation and Control. Springer Press, 402−416.

HUR, Y., J. KIM, I. LEE, AND J.-Y. CHOI. 2004. Sound code generation from communicating hybrid

models. In Hybrid Systems: Computation and Control. Springer Press, 432−447.

JAIN, M. K. 1979. Numerical Solution of Differential Equations. John Wiley & Sons, New York,

US.

LAFFERRIERE, G., G. J. PAPPAS, AND S. YOVINE. 1999. A new class of decidable hybrid systems.

In Hybrid Systems: Computation and Control, F. W. Vaandrager and J. H. van Schuppen,

Eds. LNCS 1569. Springer, 137−151.

LYNCH, N. A., R. SEGALA, F. W. VAANDRAGER, AND H. B. WEINBERG. 1995. Hybrid I/O automata.

In Hybrid Systems III, R. Alur, T. A. Henzinger, and E. D. Sontag, Eds. LNCS 1066. Springer,

496−510.

PARK, T. AND P. BARTON. 1996. State event location in differential-algebraic models. ACM

Ensuring Sound Numerical Simulation of Hybrid Automata 87

Journal of Computing Science and Engineering, Vol. 3, No. 2, June 2009

Transactions on Modeling and Computer Simulation 6, 2 (April), 137−165.

PRESS, W. H., S. A. TEUKOLSKY, W. T. VETTERLING, AND B. P. FLANNERY. 1999. Numerical

Recipes in C: the Art of Scientific Computing, 2nd edition. Cambridge University Press,

Cambridge, UK.

Yerang Hur received his BS and MS degrees in Computer Engineering

1994 and 1996, respectively from Seoul National University, Korea. His

research interst includes embedded system design, modeling and analysis
of hybrid systems, parallel and distributed simulation, real-time communi-

cation, and QoS support for broadband communication. He is a Ph.D.

candidate of the Department of Computer and Information Science at the
University of Pennsylvania and currently, he is employed by Posdata

America R&D center.

Jae-Hwan Sim received the B.S degree from Yonsei University, Seoul,
Korea, in 2002, the M.S. degree from Korea University, Seoul, Korea, in

2006. He is currently in Ph.D. course at Korea University. His research

interests include real-time embedde system, formal methods, and control
system.

Jesung Kim received the BS, MS, and PhD degrees in computer

engineering from Seoul National University, Korea, in 1991, 1993, and
1998, respectively. He pursued postdoctoral research at the University of

Pennsylvania and at Seoul National University. He was a research

engineer at the Information & Telecommunications R&D Center of
Hyundai Electronics, Korea, from 1998 to 2000. Currently, he is with The

MathWorks, Inc., where he has been a Senior Software Developer since

2005. His research interests include model-based embedded systems
design, hybrid systems, computer architecture, memory management, and

Bluetooth-based personal area networking.

Jin-Young Choi received the B.S. degree from Seoul National University,

Seoul, Korea, in 1982, the M.S. degree from Drexel University in 1986, and
the Ph.D. degree from University of Pennsylvania, in 1993. He is currently

a professor of Computer Science and Engineering Department, Korea

University. His research interests are in real-time computing formal
methods, security, software engineering, and protocol engineering.

