
Journal of Computing Science and Engineering, Vol. 3, No. 4, December 2009, Pages 195-215.

Bounding Worst-Case Data Cache Performance by

Using Stack Distance

Yu Liu and Wei Zhang

Department of Electrical and Computer Engineering

Southern Illinois University Carbondale

Carbondale, IL 62901

{liu,zhang}@engr.siu.edu

Received 4 May 2009; Revised 28 October 2009; Accepted 4 November 2009

Worst-case execution time (WCET) analysis is critical for hard real-time systems to ensure that
different tasks can meet their respective deadlines. While significant progress has been made
for WCET analysis of instruction caches, the data cache timing analysis, especially for set-
associative data caches, is rather limited. This paper proposes an approach to safely and tightly
bounding data cache performance by computing the worst-case stack distance of data cache
accesses. Our approach can not only be applied to direct-mapped caches, but also be used for
set-associative or even fully-associative caches without increasing the complexity of analysis.
Moreover, the proposed approach can statically categorize worst-case data cache misses into
cold, conflict, and capacity misses, which can provide useful insights for designers to enhance
the worst-case data cache performance. Our evaluation shows that the proposed data cache
timing analysis technique can safely and accurately estimate the worst-case data cache
performance, and the overestimation as compared to the observed worst-case data cache misses
is within 1% on average.

Categories and Subject Descriptors: C3 [SPECIAL-PURPOSE AND APPLICATION-BASED

SYSTEMS] Real-time and Embedded Systems; J7 [COMPUTERS IN OTHER SYSTEMS]
Real-time

General Terms: Performance, Reliability

Additional Key Words and Phrases: Static Timing Analysis, Worst-case Execution Time, Stack
Distance, Data Caches

1. INTRODUCTION

Real-time systems ranging from aircraft controllers to pace makers have been widely

used in our society. In those systems, it is important to know the worst-case execution

time (WCET) of each real-time task to ensure that different tasks can meet their

Copyright(c)2009 by The Korean Institute of Information Scientists and Engineers (KIISE).

Permission to make digital or hard copies of part or all of this work for personal or classroom use

is granted without fee provided that copies are not made or distributed for profit or commercial

advantage and that copies bear this notice and the full citation on the first page. Permission to

post author-prepared versions of the work on author's personal web pages or on the noncommercial

servers of their employer is granted without fee provided that the KIISE citation and notice of the

copyright are included. Copyrights for components of this work owned by authors other than

KIISE must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to

post on servers, or to redistribute to lists, requires an explicit prior permission and/or a fee.

Request permission to republish from: JCSE Editorial Office, KIISE. FAX +82 2 521 1352 or email

office@kiise.org. The Office must receive a signed hard copy of the Copyright form.

196 Yu Liu and Wei Zhang

Journal of Computing Science and Engineering, Vol. 3, No. 4, December 2009

respective deadlines. While the actual execution time of a given task can be measured

on a particular platform, the WCET estimate based on measurement alone is unsafe

because it is not feasible to exhaust all the possible program paths, especially for

applications with complex control flows. Consequently, the static analysis technique

(i.e., WCET analysis) has become a promising approach to obtaining the worst-case

execution time for real-time tasks.

The WCET of a real-time task, however, is not only dependent on the inputs and

program behavior, but also determined by the timing information of the underlying

processor. Unfortunately, modern microprocessors are generally designed to improve

the average-case performance, and some architectural features such as cache

memories, branch prediction and speculative execution are detrimental to the worst-

case execution time and can substantially complicate the WCET analysis [Berg et al.

2004; Rochange and Sainrat 2002]. In the last two decades, there has been much work

on WCET analysis for microprocessors with advanced architectural features [Wilhelm

et. al 2007]. While significant progress has been made in static instruction cache

analysis [Arnold et al. 1994; Healy et al. 1995; Li et al. 1995; Lim et al. 1994];

relatively, improvement in data cache WCET analysis is rather limited. The main

reason is that unlike instruction accesses, memory addresses of data accesses can

change at runtime. For example, a reference to an array element in a loop is likely

to access different data with varied memory addresses in different loop iterations

(although the instruction of this data access is fixed across loop iterations). In

addition, data caches are often set-associative so as to reduce the conflict data misses

(while instruction caches could be direct-mapped to minimize access latency). As a

result, timing analysis for (set-associate) data caches can be very complex, due to the

need to estimate the worst-case data access history for each cache set with multiple

ways.

This paper propose an approach to tightly bounding the worst-case data cache

performance by computing stack distance [Beyls and D'Hollander 2001; Cascaval and

Padua 2003] statically across different program paths. Compared with prior work

[White et al. 1997; Li et al. 1996; Ferdinand and Wilhelm 1998; Ramaprasad and

Mueller 2005; Staschulate and Ernst 2006] on static data cache analysis, this paper

makes the following major contributions:

− The proposed approach can be easily applied to not only direct-mapped caches, but

also set-associative and fully-associative caches, without increasing the analysis

complexity.

− Our approach can statically categorize worst-case data cache misses into cold

misses, conflict misses and capacity misses, which can provide useful insights to

cache and software designers to enhance the worst-case data cache performance.

To the best of our knowledge, no existing data cache WCET analysis techniques

[White et al. 1997; Li et al. 1996; Ferdinand and Wihelm 1998; Ramaprasad and

Mueller 2005; Staschulate and Ernst 2006] can provide such specific information

of worst-case data cache misses.

− We extensively evaluate the proposed static timing analysis approach on a diverse

set of benchmarks for a variety of data caches. The evaluation shows that the

Bounding Worst-Case Data Cache Performance by Using Stack Distance 197

Journal of Computing Science and Engineering, Vol. 3, No. 4, December 2009

proposed WCET analysis can safely and very accurately estimate the worst-case

data cache performance, and the overestimation as compared to the observed

worst-case data cache misses through simulation is within 1% on average.

The rest of this paper is organized as follows. Section 2 introduces the worst-case

data cache analysis approach based on computing stack distance. Section 3 describes

the evaluation methodology and Section 4 gives the experimental results. The related

work is discussed in Section 5. Finally, we draw conclusions in Section 6.

2. STACK DISTANCE BASED WORST-CASE DATA CACHE ANALYSIS

Stack distance [Beyls and Hollander 2001; Cascaval and Padua 2003] has been widely

used in cache performance analysis; however, prior work on stack distance has

concentrated on studying the average-case cache behavior, which can be quite

different from the worst-case behavior. To the best of our knowledge, this is the first

work to analyze the worst-case data cache behavior by using stack distance.

Stack distance of a memory access can be defined as the number of accesses to

unique addresses made since the last reference to the requested data [Beyls and

Hollander 2001]. The stack distance has an interesting property: in a fully-associative

LRU cache with n lines, a reference with stack distance d < n will hit, and a reference

with stack distance d ≥ n will miss. (the detailed proof can be found at [Beyls and

Hollander 2001]). Therefore, cache misses can be easily classified into cold, conflict or

capacity misses based on the stack distance. More specifically, suppose a d-way set-

associative cache has N lines, and the stack distance of a cache access a is s, then:

− a is a hit, if s < d.

− a is a conflict miss, if d ≤ s < N.

− a is a capacity miss, if N ≤ s < ∞

− a is a cold miss, if s = ∞ (i.e., a has not been accessed before).

To analyze the worst-case data cache behavior by using the stack distance, it is a

necessity to generate data cache access traces for different program paths and then

calculate the worst-case data cache misses based on the worst-case data cache access

trace (instead of an average-case trace). The framework of our data cache timing

analysis technique is shown in Figure 1. As we can see, the C source file is firstly

compiled by the Trimaran compiler [Trimaran 2009]. According to the data

declaration and relative address information from the compiled code, a data address

calculator generates virtual addresses for data cache accesses on different program

paths. The stack distance calculator then calculates the stack distance for each data

cache access, built upon which the cache hits or misses can be derived. Finally, the

timing analyzer enumerates data cache accesses on different program paths to

compute the worst-case cache performance, as well as the WCET.

In the rest of the section, we will explain static data address generation in

subsection 2.1. The stack distance computation will be introduced in subsection 2.2,

and the worst-case data cache performance calculation will be presented in subsection

2.3.

198 Yu Liu and Wei Zhang

Journal of Computing Science and Engineering, Vol. 3, No. 4, December 2009

2.1 Static Data Address Generation

Our static data address generation is based on prior work in [White et al. 1997],

which consists of two steps, i.e., relative address calculation and virtual address

calculation. Before introducing the algorithms to generate data addresses, we would

like to point out the constrains of our approach.

In this work, we have made the following three assumptions. First, there is no

dynamic memory allocation (i.e., memory reference in heap) in the source program.

Second, the maximal number of loop iterations can be either statically analyzed or

annotated by users. Third, we assume that the page size of the virtual memory

system is an integer multiple of the data cache size, which is not uncommon. For

example, the MicroSPARC I has a 4KB page size and a 2KB data cache [White et al.

1997]. Therefore, we can use part of the virtual address, specifically the page offset,

to index the cache. In other words, both a virtual address and its corresponding

physical address will be mapped to the same line in the data cache.

Before the virtual address generation, the timing analysis tool first calculates the

relative address for each load and store instruction. There are three scenarios for the

relative address calculation:

− Static data references (i.e., global scalars: their relative addresses can be directly

calculated through the data declaration information available from the compiler.

Typically, data references of this kind occur outside loops, thus their relative

addresses are zero.

− Scalar references to the run-time stack (i.e., local scalars): Normally, the compiler

will firstly try to allocate local scalars to the registers. If all available registers are

used (i.e., register spills), the remaining local scalars will be allocated to the

memory due to insufficient registers. For scalars spilled to memory, our algorithm

can capture their addresses in the load/store instructions, which are statically

available. Their relative addresses can be calculated as a set of addresses based

on the sequence of calls that are associated with an invocation of a function, which

can be determined by statically analyzing the call graph. In addition, for these

Figure 1. Framework of Stack Distance Based Data Cache Timing Analysis Tool.

Bounding Worst-Case Data Cache Performance by Using Stack Distance 199

Journal of Computing Science and Engineering, Vol. 3, No. 4, December 2009

scalars allocated to the registers, we do not need to take care of them for the data

cache analysis, since they do not need to access the cache.

− Calculated address references (i.e., arrays and pointers): these data references

normally occur inside loops, which can be referred by two different methods in C

language, i.e., by array indexes or pointers. We will introduce two algorithms (see

Section 2.1.1 and 2.1.2) to calculate the relative addresses for references by arrays

and pointers, respectively. All of our static analysis focuses on the assembly codes,

and the address generation patterns for the array-based and pointer-based data

references are not exact the same in the assembly codes generated by Trimaran

compiler. Thus, we need to analyze them separately to calculate the relative

addresses. The proposed analysis needs to statically compute the memory address

of each load/store instruction that needs to access data cache. Thus our analysis

depends on the code generator in terms of the format of instruction, the addressing

mode to generate the memory addresses. Although our analysis in this paper

focuses on the compiling result of Trimaran, we believe our approach can be easily

adapted to other compilers as well.

To statically calculate addresses for both arrays and pointers, the address generator

needs to determine, for each loop, the set of the primary induction variables, their

initial values (e.g init1, init2, ..., and initn in the following algorithms), strides (e.g.

stride1, stride2, ..., and striden in the following algorithms) and the number of

iterations for each loop (e.g. time1, time2, ..., and timen in the following algorithms).

In this paper, we refer the chain of addition/subtraction operations involved in

relative address generation as intermediate additions/subtractions. Particularly, the

intermediate addition/subtraction that stores the base address information in the

source operand is called the last intermediate addition/subtraction (i.e., the intermediate

addition/subtraction n). The loop corresponding to the relative address generation for

Figure 2. The Algorithm to Calculate Addresses for Array References.

200 Yu Liu and Wei Zhang

Journal of Computing Science and Engineering, Vol. 3, No. 4, December 2009

the load/store operation is called the seed loop in this paper, and the primary

induction register of the seed loop is referred as the seed register. The stride value for

each seed loop can be found in a multiply operation, in which the 1st source operand

is the seed register and the 2nd source operand contains the stride value.

2.1.1 Address calculation for array references

Figure 3. An Example of Data Address Calculation for Array References.

Figure 4. The Algorithm to Calculate Addresses for Pointer References.

Bounding Worst-Case Data Cache Performance by Using Stack Distance 201

Journal of Computing Science and Engineering, Vol. 3, No. 4, December 2009

The algorithm to statically calculate addresses for array references is given in Figure

2. The basic idea of this algorithm is to perform data flow analysis on the compiled

code to get the information about address changing strides, initial values, and the

number of iterations for each loop, based on which the static address generator can

calculate the sequence of relative addresses for array references. First, we get all

load/store operations from the Rebel code. Then, we get the information needed for

relative address generation through scanning all addition, multiply, and move operations

respectively. Last, we use all the information gathered to generate the relative addresses

following the array-based address generation mode.

To illustrate this algorithm, an example is given in Figure 3. In this example, there

is only a store operation (i.e., op 12) that accesses memory. In order to get all the

relative addresses of this store instruction in all the loop iterations, the static data

address generator takes the following steps:

(1) Scan all load/store operations in Rebel code to find the store operation, i.e., op 12

(line 1). The SRC1 register of this operation contains the memory address, and the

number of this register is r7.

(2) Scan all addition operations on the data dependence chain to find the

intermediate addition (i.e., op 6) whose DEST1 register is r7 (line 4-6). The SRC1

register and SRC2 register of op 6 are r6 and r5, respectively.

(3) Scan all multiply operations (line 7-11) (i.e., op 11 in this example) whose DEST1

register is the second address source register (i.e., r5) in order to find the multiply

operation for the primary induction register of the inner loop. As a result, r3 is

identified as the primary induction register of the inner loop, and the stride value

of the outer loop is 4, as specified in SRC2 of this operation.

(4) Scan all multiply operations (line 7-11) (i.e., op 9 in this example) whose DEST1

register is the intermediate register (i.e., r2) for primary induction register of the

outer loop to find the multiply operation for the primary induction register of the

outer loop. As a result, r4 is identified as the primary induction register of the

outer loop, and the stride value of the outer loop is 20, as specified in SRC2 of this

operation.

(5) Scan all move operations (line 7-11) (i.e., op 5 and op 7 in this example) whose

DEST1 registers are primary induction registers. These move operations hold the

initial values of inner and outer loops, which are 0 for this example.

(6) Scan all intermediate addition operations (line 12) whose DEST1 register is the

first address source register (i.e., r6) and the result is op 10, which adds the base

address with the relative address. In op 10, the label of the base address is _a, and

r2 specifies the basic induction register that controls the loop execution (line 12).

(7) Then by applying the algorithm of relative address calculation (line 14-19), the

following relative addresses will be generated for the store operation (i.e., 12) of

this code segment: 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68,

72, 76, 80, 84, 88, 92, 96.

2.1.2 Address calculation for pointer references

Another way to access data in memory is to use pointers. Once the value of a pointer

is modified, the memory address to which this pointer points to will also be changed.

202 Yu Liu and Wei Zhang

Journal of Computing Science and Engineering, Vol. 3, No. 4, December 2009

Therefore, the static address generator needs to obtain the information on the stride

of the address changes by this pointer, as well as the information on the loop where

this pointer is located, based on which it can statically generate the sequence of

relative addresses for pointer-based memory references. The algorithm to calculate

relative addresses for pointer references is described in Figure 4. First, we get all

load/store operations from the Rebel code. Then, we get the information needed for

relative address generation through scanning all addition and move operations

respectively. Last, we use all the information gathered to generate the relative

addresses following the pointer-based address generation mode.

To illustrate this algorithm, an example is given in Figure 5. In this example, we

need to calculate relative addresses for C code *px++=0 in the loop. In order to get

all relative addresses for this store instruction, the static address generator takes the

following steps:

(1) Scan all load/store operations in the Rebel code (line 1). Consequently, the \it

store operation (op 10) is found, whose SRC1 register (i.e., r4) contains the

memory address.

(2) Scan all move operations (line 4-6) to identify one (i.e., op 8) whose DEST1 register

is r4, and whose SRC1 register (r3) of this operation contains the memory address.

(3) Scan all move operations (line 4-6) to find the one (i.e., op 5) whose DEST1 register

is r3. From this operation (i.e., op 5), the algorithm can identify the label of base

address, which is _x in this example.

Figure 5. An Example of Calculating Relative Addresses for Pointer References.

Bounding Worst-Case Data Cache Performance by Using Stack Distance 203

Journal of Computing Science and Engineering, Vol. 3, No. 4, December 2009

(4) Scan all addition operations (line 7) whose DEST1 register is r3, and SRC2 of this

addition (i.e., op 9) contains the stride value, which is 4 for this example.

(5) Scan all operations to find the primary induction register of this loop (line 8), and

get the information of the number of loop iterations (i.e., 10) and the initial value

(i.e., 0) for this loop.

(6) Then based on the relative address calculation process (line 11-13), a sequence of

relative addresses are generated as the following: 0, 4, 8, 12, 16, 20, 24, 28, 32, 36.

2.1.3 Virtual Address and Address Trace Generation

After getting relative addresses, we need to generate the virtual address for each

load/store operation in the program, including these inside the loops and outside the

loops. The address calculator generates the virtual address by adding the base

address with the relative address. Also, we need to merge these virtual addresses

following their sequence on a specific path to get the virtual address trace on this

path. Later, the address traces of different paths inside and outside the loops will be

processed by the stack distance to predict the cache behavior. Comparing these

processing results from the stack distance, we can determine the worst-case cache

behavior, which will be detailed in subsection 2.3.

More specifically, first the loops should be processed in a bottom-up manner to

generate its virtual address trace due to the loop nesting. It means that we process

Figure 6. The Algorithm to Calculate Virtual Address for Each Data Reference and Merge the

Address Trace.

204 Yu Liu and Wei Zhang

Journal of Computing Science and Engineering, Vol. 3, No. 4, December 2009

nested loops from the innermost one to the outermost one. In another word, the

virtual address trace of the loop is generated until all of its child loops are processed.

Second, we merge the virtual address traces inside loops with these outside loops

following their sequence on a specific path to get the whole virtual address traces.

A detailed algorithm is summarized in Figure 6. In this algorithm, we first generate

the virtual addresses for each load/store operation (Line 1-6). Second, we generate the

address trace inside each loop in the program (Line 7-16). Third, we merge the

address trace inside the nested loops following the bottom-up manner mentioned

above (Line 17-25). Last, we merge the address traces inside the nested loops with

addresses outside the loops to generate the whole address trace (Line 26).

In our work, all functions in the benchmarks are inlined in our work. Thus, we do

not have function call handling. However, we believe that our method can be easily

extended to handle the function calls. Thus, we propose the following method to

generate the virtual memory address trace for the program with function calls

following the tree style call graph. When we generate the memory address trace for

the whole program, we need to generate the address traces for functions without any

other function calls (i.e., leaf functions) at first, and then process their caller functions

following the bottom-up manner till the root of call graph tree. Obviously, the main

function (i.e., the root function) is the last one to be processed, and its memory

address trace is the final one for the whole program. Also, we need to compare the

data cache performance of different paths in each function by processing their address

traces through the stack distance. Then, we only merge the address trace of the worst-

case data cache performance path of this function to the address trace of its caller

functions.

An example is given in Figure 7. First, we generate the address traces for the leaf

functions separately, including the function A, C and D. Also, we compare the data

cache performance of different paths through the stack distance in each of these

functions to obtain the address trace of the worst-case path. Second, we merge the

worst-case address traces of the function C and D into different paths of the function

B. Following the same comparison, we can get the worst-case address trace for the

function B. Last, we merge the address traces of the function A and B with different

paths of the main function, do the comparison among the paths, and then get the

worst-case address trace for the whole program.

Figure 7. An Example of Generating the Address Trace for the Program with Function Calls.

Bounding Worst-Case Data Cache Performance by Using Stack Distance 205

Journal of Computing Science and Engineering, Vol. 3, No. 4, December 2009

2.2 Calculating Stack Distance

Once the virtual address is generated for each load/store instruction, the analysis tool

can calculate the stack distance for each data cache reference. With the data cache

configuration information (i.e., cache size, cache line size, associative information, etc.),

data cache behavior can be statically predicted for all data references, based on the

stack distance property introduced in the beginning of Section 2.

It should be noted that both temporal locality and spatial locality of data references

need to be considered to calculate the stack distance accurately. More specifically, the

timing analysis tool measures the stack distance with cache line granularity, not

address granularity. The example given in Table I shows the difference of stack distance

calculation between using address granularity and using cache line granularity,

assuming the cache line size is 16 bytes.

Built upon the prior work in stack3, the stack distance calculator takes the

following five steps to compute stack distance for each data cache reference:

− Input: read the next reference from the address trace file generated by the virtual

address generator.

− Find: search the whole stack to find the cache line that this reference accesses and

then determine its stack distance.

− Update: if the reference is the first access to that trace element, push this reference

into the top of the stack. Otherwise, move the reference θ found in the stack to the

top of the stack, and all the references between the top and the original θ location

are pushed down one position. The references below the original θ location will not

be affected.

− Calculation: update stack distance histogram, i.e., S(θ), according to the stack

distance of this reference. More specifically, S(θ) can be calculated as follows: (1) if

the reference is the first access to that element, set θ = ∞, increment S(∞) and push

this reference into the top of the stack; (2) if this data has been previously

referenced in the stack, let θ be the distance from the top of the stack to the position

at which the reference is found, increment S(θ), and move this reference to the top

of the stack.

− Categorization: based on the stack distance of each data cache reference, we can

categorize it into either cache hit or one of the cold, conflict or capacity misses,

according to the stack distance property and its use in cache classification described

in the beginning of Section 2.

Table I. An Example of Calculating Stack Distance Based on Address and Cache Line Granularity

Respectively, for a Cache Line Size of 16 Bytes.

Reference No 1 2 3 4 5 6 7

Address Stack Distance (addr)
0

•

32

•

24

•

96

•

8

•

24

•

100

•

Cache Line Stack Distance (line)
0

•

2

•

1

•

6

•

0

3

1

2

6

2

206 Yu Liu and Wei Zhang

Journal of Computing Science and Engineering, Vol. 3, No. 4, December 2009

2.3 Computing Worst-Case Data Cache Misses

So far we have focused on analyzing the data cache misses for load/store instructions

on a given program path. Since there are many possible paths in a program, the

timing analyzer needs to find the largest number of data cache misses to bound the

worst-case data cache performance. For paths generated by the branches outside

loops, since there are relatively a small number of different paths, especially for small

real-time kernels, the timing analyzer can relatively more efficiently (as compared to

enumerate all paths inside loops) exhaust all the data traces on different paths to

estimate the worst-case data cache misses. Although we still need to analyze a large

number of paths for the large benchmarks, compared to the number of paths

generated by loops, the number of paths outside the loop is still limited. For instance,

even for a loop with two inside paths and 100 iterations, it can generate 2100 number

of paths. Therefore, paths outside loops are relatively easier to enumerate as

compared to paths inside loops. Thus, for paths generated by branches inside loops,

it is generally infeasible to exhaust all the different paths, which could be exponential

to the number of loop iterations. In this case, we use a path-based static analysis

algorithm as depicted in Figure 8 to effectively estimate the worst-case data cache

misses.

It should be noted that our algorithm assumes that there is no conflict between data

cache accesses on different paths (although data cache conflicts within a single path

are allowed and can be analyzed by our approach). Also, the benchmarks used in our

work are adapted to provide large number of data accesses and match this

assumption. This assumption greatly reduces the number of paths that the timing

analyzer needs to enumerate, which is also a reasonable assumption. This is because

Figure 8. The Algorithm to Calculate Worst-case Data Cache Misses for Loops.

Bounding Worst-Case Data Cache Performance by Using Stack Distance 207

Journal of Computing Science and Engineering, Vol. 3, No. 4, December 2009

if data accesses on two different paths of a loop have conflicts, they may alternatively

replace each other repeatedly in different loop iterations, thus leading to excessive

cache misses for the program. In that case, typically compilers can perform data

layout optimizations [Muchnick 1997] to eliminate these inter-path cache conflicts

within loops.

As shown in Figure 8, the timing analyzer examines each loop in the program (line

1). If a loop has no branch, then there is only a single path, and the worst-case data

cache timing analysis becomes trivial (line 2-5). For loops with branches, the

algorithm generates data traces on both paths for each conditional branch (line 7-8).

By calculating stack distances for data references on each path, the timing analyzer

can estimate the number of data cache misses on each loop iteration for each data

trace D(T, i), by taking into account the cache associativity, size and block size (line

9-12). The timing analyzer then sorts all the D(T, i) in decreasing order, and the sum

of the first N (i.e., the number of loop iterations) D(T, i) (i.e., the N largest D(T, i)) will

be the worst-case number of data cache misses for this loop.

To illustrate this algorithm, an example is given in Figure 9. Figure 9(a) depicts the

control flow graph of a loop with two paths (i.e., this loop contains only one conditional

branch), including path p (A−B−D) and path q (A−C−D). Suppose the total number of

loop iterations is 10. Based on the algorithm described in Figure 8, the timing

analyzer computes the stack distance and derives the number of cache misses on each

path for each loop iteration (i.e., pi and qi, 1 ≤ i ≤ 10), which are given in Figure 9(b).

Our algorithm then sorts all the pi and qi (1 ≤ i ≤ 10) in decreasing order, and finds

the first 10 largest numbers, which are shown in Figure 9(c). The worst-case number

of data cache misses is then calculated as the sum of the data cache misses on those

10 iterations, which is 28 for this example.

It should be noted that the algorithm given in Figure 8 can be computed efficiently.

Suppose a loop has N iterations and B conditional branches, the complexity of our

algorithm is O(2B
* N). Since a loop typically only contains a small number of

branches, the time efficiency of this algorithm is most likely linear. By comparison,

the complexity of a naive algorithm to exhaust all the paths in a loop for deriving the

worst-case data cache misses is O(2B*N), which is exponential and prohibitively

expensive to compute.

Figure 9. An Example of Computing Worst-case Data Cache Misses for Loops.

208 Yu Liu and Wei Zhang

Journal of Computing Science and Engineering, Vol. 3, No. 4, December 2009

2.4 Analysis with Relaxed Limitation

In addition, we believe that our algorithm can be extended to cover the scenarios that

there is conflict between data cache accesses on different paths. First, we still use our

algorithm to find the number of worst-case data cache missed by assuming there is

no inter-path conflict as the base cache misses. Then, we interleave different paths in

the loop to find the largest number of data cache misses due to inter-path conflict as

the extra cache misses. Last, we add up the base cache misses and the extra cache

misses to get an upper bound of worst-case data cache misses. Although this method

will bring some overestimation, it is surely a safe estimation for worst-case data cache

performance estimation.

Let's still use the example in Figure 9 to illustrate our extended method. Now, we

suppose that there is conflict between data cache accesses on the path p and q. First,

we can still get 28 data cache misses as the base cache misses following our original

method. Then, we compare the two path interleaving pattern pq and qp respectively.

Let's suppose the number of data cache misses of the pattern pq due to inter-path

conflict is 2, while it is 1 for the pattern qp. Thus, we choose 2 as the extra cache

misses. Since the number of iteration of the loop is 10, we can repeat this interleaving

pattern 5 times. Therefore, the total extra cache misses is 10 by 2 times 5. Last, we

can get the upper bound of worst-case data cache misses by 28 plus 10, which is 38

in total. Clearly, there could not be “worse” data cache performance than this; thus

this analysis can obtain safe yet maybe overestimated worst-case data cache misses.

3. EVALUATION METHODOLOGY

To evaluate the proposed worst-case data cache timing analysis approach, we compare

the estimated worst-case data cache misses with the observed worst-case data cache

misses through extensive simulation. We simulate a VLIW processor based on the

HPL-PD architecture [Kathail et al. 2000] by using Trimaran compiler/simulator

infrastructure [Trimaran 2009]. The data cache timing analyzer has been

implemented as independent modules in the backend compiler Elcor. The important

parameters of the baseline VLIW processor are given in Table II. It should be noted

Table II. Configuration Parameters and their Values in the base Configuration of the Simulated

VLIW Processor.

Configuration Parameter Value

Processor

 Functional Units 2 integer FUs

 2 floating-point FUs

1 load/store unit

1 branch unit

 Register File 16 global registers

Cache and Memory Hierarchy

 L1 Data Cache 8KB, 2-way, LRU, 32B blocks 1 cycle latency

 L1 Instruction Cache perfect

 Memory 10/100 cycle, unlimited size

Bounding Worst-Case Data Cache Performance by Using Stack Distance 209

Journal of Computing Science and Engineering, Vol. 3, No. 4, December 2009

that we assume a perfect L1 instruction cache in this work, so that we can focus on

analyzing worst-case data cache performance and studying its effect on the WCET.

Actually, the stack distance based timing analysis approach can also be applied to the

instruction cache, whose addresses are relatively easier to generate. However, the

instruction cache timing analysis is out of the scope of this paper.

For this evaluation, we select eight benchmarks from a diverse set of sources,

including the SNU real-time benchmark suite [SNU 2009], DSPstone [Zivojnovic et al.

1994] and Trimaran built-in benchmarks [Trimaran 2009]. The benchmarks used in

our work are either with the single fixed execution time (e.g. fir, lms, matmul), or with

the variable execution time depending on different inputs (e.g. ifthen, hyper, eight,

Table III. The Salient Characteristics of the Selected Benchmarks.

Benchmarks Source Exec Cycles D Accesses D Misses D Miss Rate

dag Trimaran 6431496 1200001 1247 0.104%

eight Trimaran 6628716 934001 869 0.093%

fir DSPstone 37326 12802 691 5.398%

hyper Trimaran 4746406 485008 738 0.152%

ifthen Trimaran 9134086 2300001 1506 0.065%

lms DSPstone 49314 16001 1089 6.806%

matmul SNU Real-Time 1792224 502501 13661 2.719%

sqrt SNU Real-Time 1563289 243276 1485 0.610%

Table IV. Estimated and Observed Worst-case Data Cache Misses.

Benchmark Simulated D Misses Estimated D Misses Est./Sim.

dag 1247 1260 1.010

eight 869 879 1.012

fir 691 696 1.007

hyper 738 745 1.009

ifthen 1506 1518 1.008

lms 1089 1092 1.003

matmul 13661 13847 1.014

sqrt 1485 1492 1.005

Table V. Breakdown of Estimated and Observed Data Cache Misses, in Terms of Cold Misses, Con-

flict Misses and Capacity Misses.

Simulated Results Estimated Results Estimated/Simulated

Benchmark Cold Conflict Capacity Cold Conflict Capacity Cold Conflict Capacity

dag 879 0 368 885 0 375 1.007 1.000 1.019

eight 629 0 240 637 0 242 1.013 1.000 1.008

fir 402 0 289 404 2 292 1.005 1.000 1.010

hyper 379 0 359 385 0 360 1.016 1.000 1.003

ifthen 1129 0 377 1135 0 383 1.005 1.000 1.016

lms 401 0 688 401 0 691 1.000 1.000 1.004

matmul 940 3021 9700 943 3067 9837 1.003 1.015 1.014

sqrt 505 0 980 511 0 981 1.012 1.000 1.001

210 Yu Liu and Wei Zhang

Journal of Computing Science and Engineering, Vol. 3, No. 4, December 2009

dag, sqrt). Since these benchmarks are not too big, we can determine the worst-case

causing inputs by analyzing the source codes directly. Also, all the benchmarks are

compiled by using the Trimaran compiler. The salient characteristics of the

benchmarks are shown in Table III.

4. EXPERIMENTAL RESULTS

4.1 Estimated vs. Simulated Results

Table IV compares the estimated worst-case cache misses and the simulated (i.e.,

observed) worst-case cache misses for the 8K 2-way set-associative data cache of the

baseline processor. We observe that for all the benchmarks, the estimated worst-case

number of data cache misses is very close to the simulated worst-case number of data

cache misses, indicating that the stack distance based worst-case data cache analysis

is safe and highly accurate. Actually, for most benchmarks, the difference between the

estimated number and the simulated number of worst-case cache misses is within 1%.

On average, the estimated worst-case number of data cache misses is only 0.8%

higher than the simulated worst-case number of data cache misses.

An unique advantage of the stack distance based analysis is that it can estimate the

data cache misses in terms of cold, conflict and capacity misses. Table V compares the

estimated worst-case cold, conflict and capacity misses with the simulated results.

The last three columns give the ratios of the estimated cache misses to the simulated

cache misses for cold, conflict and capacity misses, which are 100.8%, 100.2% and

Table VI. Estimated and Observed Worst-case Execution Cycles with 10 Cycles Data Cache Miss

Penalty.

Benchmarks Observed WCET Estimated WCET Est./Obs.

dag 6431496 6630630 1.031

eight 6628716 6760820 1.020

fir 37326 37398 1.002

hyper 4746406 4945480 1.042

ifthen 9134086 9383210 1.027

lms 49314 49346 1.001

matmul 1792224 1794090 1.001

sqrt 1563289 1658700 1.061

Table VII. Estimated and Observed Worst-case Execution Cycles with 100 Cycles Data Cache Miss

Penalty.

Benchmarks Observed WCET Estimated WCET Est./Obs.

dag 6543726 6744030 1.031

eight 6706926 6839930 1.020

fir 99516 100218 1.007

hyper 4812826 5012530 1.041

ifthen 9269626 9519830 1.027

lms 147324 147626 1.002

matmul 3021714 3040320 1.006

sqrt 1696939 1792980 1.057

Bounding Worst-Case Data Cache Performance by Using Stack Distance 211

Journal of Computing Science and Engineering, Vol. 3, No. 4, December 2009

100.9% respectively on average. These results demonstrate that the proposed

approach can safely and tightly estimate all the three different types of data cache

misses, which can provide useful insights for cache designers and real-time software

developers to enhance the worst-case data caching performance for real-time systems.

4.2 WCET Results

While this paper focuses on worst-case data cache analysis, we have also incorporated

the worst-case data cache misses and their latencies into the pipeline timing model

based on [Healy et. al 1995] to estimate the WCET for the baseline VLIW processor.

Table VI lists the observed worst-case execution cycles (through simulation) and the

estimated worst-case execution cycles with 10 cycles data cache miss penalty, and

Table VII lists the data with 100 cycles data cache miss penalty. The last column in

Table VI and Table VII gives the ratio of the estimated WCET to the observed WCET

through simulation. Due to the tight worst-case data cache analysis, which is often

one of the most challenging tasks in timing analysis for microprocessors, the

estimated WCET is only slightly more than the observed WCET. On average, the

estimated WCET is only 2.3% higher than the observed WCET with 10 cycles data

cache miss penalty, and 2.4% higher than the observed WCET with 100 cycles data

cache miss penalty, which indicates the importance of obtaining precise worst-case data

cache performance.

4.3 Sensitivity Results

While our default data cache is 8K and 2-way set-associative, we have also done

sensitivity analysis to study the effectiveness of the proposed approach for data caches

with different sizes and associativities. Table VIII compares the simulated and

estimated cache misses for a 2-way set-associative data cache with its size varying

from 4K to 8K and 16K. As we can see, for all these three cache sizes, our approach

can compute safe and tight upper bound of the data cache misses. On average, the

ratio of the estimated cache misses to the simulated cache misses for a 4K, 8K, or 16K

data cache is 100.8%, 100.8%, 101.0% respectively, indicating the effectiveness of the

proposed approach for data caches with various sizes.

Table VIII. Estimated and Simulated Worst-case Cache Misses for a 2-way Set-associative Data

Cache, with its Size Varying from 4K to 8K and 16K.

Simulated D Misses Estimated D Misses Estimated/Simulated

Benchmark 4K 8K 16K 4K 8K 16K 4K 8K 16K

dag 1256 1247 1012 1267 1260 1024 1.009 1.010 1.012

eight 881 869 755 890 879 764 1.010 1.012 1.012

fir 947 691 402 954 696 404 1.007 1.007 1.005

hyper 756 738 379 763 745 387 1.009 1.009 1.021

ifthen 1506 1506 1488 1518 1518 1500 1.008 1.008 1.008

lms 1345 1089 401 1348 1092 401 1.002 1.003 1.000

matmul 22215 13661 2723 22489 13847 2769 1.012 1.014 1.017

sqrt 1508 1485 508 1513 1492 512 1.003 1.005 1.008

212 Yu Liu and Wei Zhang

Journal of Computing Science and Engineering, Vol. 3, No. 4, December 2009

In our next experiment, we fix the data cache size to be 8K, but change its set

associativity from 1 way (i.e., direct-mapped) to 2 way, 4 way and fully-associative.

Table IX compares the estimated worst-case cache misses with the simulated worst-

case cache misses for data caches with different set associativities. As can be seen,

generally the estimated worst-case cache misses are close to the simulated worst-case

cache misses, especially for set-associative and fully-associative caches. However, for

the direct-mapped data cache, we observe that there is a large difference between the

estimated results and simulated results, especially for sqrt. The reason is that in a

direct-mapped cache, the number of conflict misses increases dramatically, and

different loop iterations can have quite different numbers of cache misses. Since our

approach computes the worst-case data cache misses by adding the largest number of

cache misses across all the iterations on different paths, the worst-case path may not

be simulated or even be infeasible. Nevertheless, as we can see in Table IX, the

average ratio of the estimated worst-case cache misses to the simulated worst-case

cache misses of the direct-mapped cache is 105.6%, which is still reasonably accurate

as compared to the results reported in state-of-the-art data cache timing analysis

research [White et al. 1997; Ramaprasad and Mueller 2005].

Interestingly, we notice that our approach can precisely estimate the worst-case

cache misses even for a fully-associative cache. As we can see in the last column of

Table IX, the ratio of the estimated cache misses to the simulated cache misses of a

fully-associative cache is within 101.3% for all the benchmarks. It is worthy to note

that this accurate estimation of the worst-case cache misses for the fully-associative

cache does not increase the analysis complexity, since once the worst-case stack

distance is calculated, it can be applied to caches with different set associativities to

compute or categorize data cache misses without further analysis. This is in contrast

to the state-of-the-art data cache timing analysis techniques [White et al. 1997; Li et

al. 1996; Ramaprasad and Mueller 2005], whose complexity can aggravate

significantly for set-associative caches, especially for fully-associative caches.

Therefore, we believe the proposed approach is particularly useful for the data cache

design space exploration (i.e., data caches with different sizes and associativities) to

enhance the worst-case performance.

Table IX. Estimated and Simulated Worst-case Cache Misses for an 8K Data Cache, with its Set

Associativity Varying from 1 Way (i.e., Direct-mapped) to 2 Way, 4 Way and Fully Associative.

Simulated D Misses Estimated D Misses Estimated/Simulated

Benchmark 1 way 2 way 4 way fa 1 way 2 way 4 way fa 1 way 2 way 4 way fa

dag 1153 1247 1256 1256 1179 1260 1267 1269 1.023 1.010 1.009 1.010

eight 784 869 869 877 791 879 879 888 1.009 1.012 1.012 1.013

fir 691 691 693 691 710 696 699 699 1.027 1.007 1.009 1.012

hyper 627 738 756 756 655 745 763 765 1.045 1.009 1.009 1.012

ifthen 1537 1506 1506 1506 1557 1518 1518 1521 1.013 1.008 1.008 1.010

lms 977 1089 1089 1089 981 1092 1093 1093 1.004 1.003 1.004 1.004

matmul 47415 13661 15606 16627 47628 13847 15872 16692 1.004 1.014 1.017 1.004

sqrt 1534 1485 1485 1496 2034 1492 1492 1503 1.326 1.005 1.005 1.005

Bounding Worst-Case Data Cache Performance by Using Stack Distance 213

Journal of Computing Science and Engineering, Vol. 3, No. 4, December 2009

5. RELATED WORK

Recently, there have been an increasing number of studies [White et al. 1997; Li et

al. 1996; Ferdinand and Wihelm 1998; Ramaprasad and Mueller 2005; Staschulate

and Ernst 2006] on statically bounding worst-case data cache performance. Most of

these research efforts have focused on examining the worst-case performance for

direct-mapped data caches, as the timing analysis of set-associative caches needs to

consider both the history of accesses to each cache set and the replacement algorithm,

which can dramatically explode the states that need to be maintained and can be

prohibitively expensive in terms of the computation time. Although prior work in

[White et al. 1997; Li et al. 1996; Ramaprasad and Mueller 2005] has proposed static

analysis approaches that can be generally applied to set-associative data caches, all

these methods have rather high computational complexity, and no evaluation results

are given for set-associative data caches. Therefore, compared with these state-of-the-

art techniques, the stack distance based timing analysis approach proposed in this

paper can be efficiently applied to both direct-mapped and set-associative caches

without increasing the analysis complexity. This can greatly help designers to

optimize data cache performance for real-time systems. For example, our approach

enables fast cache design space exploration to accurately study the impact of different

set associativities on the worst-case cache performance, which cannot be efficiently

supported by current timing analysis techniques. Furthermore, our approach can

classify worst-case data cache misses into cold, conflict and capacity misses without

increasing the analysis complexity, which are likely to provide specific and useful

insights for improving the worst-case data cache performance.

To enhance the time predictability of data caches, cache locking techniques have

been proposed in [Puaut and Decotigny, 2002; Vera et al. 2003]. With cache locking,

selected data is loaded into cache and locked in place so that it will not be replaced

until it is explicitly unlocked. As a result, the worst-case cache behavior becomes

predictable since the cache contents are statically known. Cache locking, however,

cannot exploit the dynamic data reuse behavior and thus cannot utilize the cache

space efficiently. For example, if a number of cache lines are locked, no other data can

use these lines, although they may exhibit certain temporal/spatial locality. This is

especially problematic if the data size is much larger than the cache size. Moreover,

explicitly locking and unlocking data introduces overheads. The stack distance based

data cache timing analysis technique proposed in this paper is orthogonal to the cache

locking techniques, and our approach enables the time-predictable data caching for

real-time systems without having to employ cache locking.

6. CONCLUSION

This paper proposes a stack distance based approach to computing the worst-case

data cache performance. While prior work on stack distance based analysis has

focused on studying average-case cache behavior, this paper exploits stack distance to

calculate the worst-case data cache behavior by using an efficient path-based analysis

technique. An advantage of the stack distance based approach is that it can be applied

to both direct-mapped and set-associative caches without increasing the complexity of

214 Yu Liu and Wei Zhang

Journal of Computing Science and Engineering, Vol. 3, No. 4, December 2009

analysis. Also, the proposed approach can statically categorize worst-case data cache

misses into cold, conflicting and capacity misses, which can provide specific and

helpful insights for cache and software designers to optimize the worst-case data

cache performance. Our extensive evaluation shows that the proposed stack distance

based approach can safely and tightly estimate the worst-case cache performance for

a variety of data caches with different sizes and set associativities.

In our future work, we would like to incorporate the infeasible-path-elimination

techniques [Healy and Whalley 2002; Chen et al. 2005] to further enhance the

accuracy and time efficiency of the stack distance based worse-case data cache

analysis. Also, we intend to apply this approach to study the worst-case instruction

cache performance, especially for set-associative instruction caches.

ACKNOWLEDGMENT

This work was funded in part by the NSF grants CNS 0720502 and CCF 0914543.

REFERENCES

ARNOLD, R., F. MULLER, D. WHALLEY, AND M. HARMON. Bounding worst-case instruction cache

performance. In Proc. of the Real-Time Systems Symposium, 1994.

BERG, C., J. ENGBLOM, AND R. WILHELM. 2004. Requirements for an design of a processor with

predictable timing. In Proc. of the Dagstuhl Perspectives Workshop on Design of Systems with

Predictable Behavior.

BEYLS, K. AND E. D'HOLLANDER. 2001. Reuse Distance as a Metric for Cache Behavior. In Proc.

of PDCS'01, Aug.

CASCAVAL, C. AND D. A. PADUA. 2003. Estimating cache misses and locality using stack distance.

In Proc. of ICS'03, June.

CHEN, T., T. MITRA, A. ROYCHOUDHURY, AND V. SUHENDRA. 2005. Exploiting branch constraints

without exhaustive path enumeration. In Proc. of the 5th International Workshop on Worst-

Case Execution Time Analysis (WCET) July.

FERDINAND, C. AND R. WILHELM. 1998. On predicting data cache behavior for real-time systems.

In Proc. of the ACM SIGPLAN Workshop on Languages, Compilers, and Tools for Embedded

System.

HEALY, C. A., D. B. WHALLEY, AND M. G. HARMON. 1995. Integrating the timing analysis of

pipelining and instruction caching. In Proc. of the Real-Time Systems Symposium.

HEALY, C. AND D. WHALLEY. 2002. Automatic detection and exploitation of branch constraints for

timing analysis. IEEE Transactions on Software Engineering, 28(8).

http://archi.snu.ac.kr/realtime/benchmark/.

KATHAIL, V., M. SCHLANSKER, AND B. R. RAU. 2000. HPL-PD architecture specification: version

1.1. HPL Technical Report.

KIM, Y. H., M. D. HILLS, AND D. A. WOOD. 1991. Implementing stack simulation for highly-

associative memories. In Computer Sciences Technical Report #997, Univ. of Wisconsin,

February.

LI, Y. S., S. MALIK, AND A. WOLFE. 1996. Cache modeling for real-time software: beyond direct

mapped instruction caches. In Proc. of the IEEE Real-Time Systems Symposium.

LI, Y. S., S. MALIK, AND A. WOLFE. 1995. Efficient microarchitecture modeling and path analysis

for real-time software. In Proc. of the 16th IEEE Real-Time Systems Symposium, Dec.

LIM, S., Y. H. BAE, G. T. JANG, B.-D. RHEE, S. R. MIN, C. Y. PARK, AND C. S. KIM. 1994. An

accurate worst case timing analysis technique for RISC processors. In Proc. of the 15th IEEE

Real-Time Systems Symposium.

MUCHNICK, S. S. 1997. Advanced compiler design and implementation. Morgan Kaufmann

Bounding Worst-Case Data Cache Performance by Using Stack Distance 215

Journal of Computing Science and Engineering, Vol. 3, No. 4, December 2009

Publishers.

PUAUT, I. AND D. DECOTIGNY. 2002. Low-complexity algorithms for static cache locking in

multitasking hard real-time systems. In Proc. of 23th Real-Time Systems Symposium

(RTSS'02), Dec.

RAMAPRASAD, H. AND F. MUELLER. 2005. Bounding worst-case data cache behavior by analytically

deriving cache reference patterns. In Proc. of the IEEE Real-Time and Embedded Technology

and Applications Symposium.

ROCHANGE, C. AND P. SAINRAT. 2002. Difficulties in computing the WCET for processors with

speculative execution. In Proc. of WCET.

STASCHULAT, J. AND R. ERNST. 2006. Worst case timing analysis of input dependent data cache

behavior. In Proc. of the 18th Euromicro Conference on Real-Time Systems (ECRTS06).

Trimaran homepage, http://www.trimaran.org.

VERA, X., B. LISPER, AND J. XUE. 2003. Data cache locking for higher program predictability. In

Proc. of the 2003 ACM SIGMETRICS International Conference on Measurement and

Modeling of Computer Systems.

WHITE, R., F. MULLER, C. HEALY, D. WHALLEY, AND M. HARMON. 1997. Timing analysis for data

caches and set-associative caches. In Proc. of the IEEE Real-Time Technology and

Applications Symposium, June.

WILHELM, R., J. ENGBLOM, A. ERMEDAHL, N. HOLSTI, S. THESING, D. WHALLEY, G. BERNAT, C.

FERDINAND, R. HECKMAN, T. MITRA, F. MUELLER, I. PUAUT, P. PUSCHNER, J. STASCHULAT,

AND P. STENSTROM. 2007. The Worst-case execution time problem - overview of methods and

survey of tools. In ACM Transactions on Embedded Computing Systems, January.

ZIVOJNOVIC, V., J. MARTINEZ, AND C. SCHL. 1994. DSPstone: A DSP-oriented benchmarking

methodology. In Proc. of ICSPAT'94, Oct..

Yu Liu is currently a PhD student in the Department of Electrical and
Computer Engineering of Southern Illinois University Carbondale. He

received his B.S and M.S degrees in Sichuan University, China in 2000

and 2003 respectively, and majored in communication engineering. Also,
he worked in Motorola as senior software engineer from 2003 through

2007. His research interest includes real-time system, wireless sensor

network, and cyber-physical system.

Wei Zhang is an associate professor in Electrical and Computer

Engineering at Southern Illinois University Carbondale. He received the
B.S. degree in computer science from the Peking University in China in

1997, the M.S from the Institute of Software, Chinese Academy of Sciences

in 2000, and the Ph.D. degree in computer science and engineering from
the Pennsylvania State University in 2003. His research interests are in

embedded and real-time computing systems, computer architecture and

compiler. Dr. Zhang has received the 2009 SIUC Excellence through
Commitment Outstanding Scholar Award for the College of Engineering,

and 2007 IBM Real-time Innovation Award. His research has been

supported by NSF, IBM and Altera. He is a senior member of the IEEE.
He has served as a member of the technical program committees for

several IEEE/ACM conferences and workshops.

