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A field of spoken dialog systems is a rapidly growing research area because the performance
improvement of speech technologies motivates the possibility of building systems that a human
can easily operate in order to access useful information via spoken languages. Among the
components in a spoken dialog system, the dialog management plays major roles such as
discourse analysis, database access, error handling, and system action prediction. This survey
covers design issues and recent approaches to the dialog management techniques for modeling
the dialogs. We also explain the user simulation techniques for automatic evaluation of spoken
dialog systems.
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1. INTRODUCTION

1.1 Overview of Spoken Dialog Systems

Spoken dialog systems can be viewed as an advanced application of spoken language

technology. The objective in developing spoken dialog systems is to provide a human-

centric interface for any user to access and manage information1. These systems are
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1In this paper, we focus on task-based dialog systems which are designed to accomplish
a well-defined task such as making a flight booking.
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becoming ubiquitous due to their rapid improvement in performance and decrease in

cost. The spoken dialog systems receive speech inputs from the user, and the system

responds with the required action and the information. For example, a user might use

a spoken dialog system to reserve a flight over the phone, to direct a robot to guide

him to a specific room, or to control in-car devices such as a music player or a

navigator. Since the early 1990s, many spoken dialog systems have been developed in

the commercial domain to support a variety of applications in telephone-based

services. For example, early spoken dialog systems functioned in restricted domains

such as telephone-based call routing systems (HMIHY) [Gorin et al. 1997], weather

information systems (JUPITER) [Zue et al. 2000], and travel planning (DARPA

communicator) [Walker et al. 2001]. More recently developed systems are used in in-

car navigation, entertainment, and communications [Minker et al. 2004; Lemon et al.

2006; Weng et al. 2006]. For example, the EU project TALK2 focused on the

development of new technologies for adaptive dialog systems using speech, graphics,

or a combination of the two in the car. More recently, multi-domain dialog systems

have been employed in real life situations [Allen et al. 2000; Larsson and Ericsson

2002; Lemon et al. 2002; Pakucs 2003; Komatani et al. 2006]. Such multi-domain

dialog systems are now able to provide services for telematics, smart home, or

intelligent robots. These systems have gradually become capable of supporting

multiple tasks and of accessing information from a broad variety of sources and

services.

1.2 Components of Spoken Dialog Systems

The general spoken dialog systems typically consist of the main components shown in

Figure 1. 

−User Input: User input is usually speech signal with noises.

−Automatic Speech Recognition (ASR): The speech signal processing first transforms

a speech waveform into a sequence of parameter vectors. The speech recognition

converts the sequence of parameter vectors into a textual input (e.g., a sequence

of words). 

− Spoken Language Understanding (SLU): The textual input of user utterance is

analyzed by natural language processing (NLP) modules (e.g., morphological

analysis, part-of-speech tagging, and shallow parsing). The SLU module maps the

pre-processed utterance to a meaning representation (e.g., semantic frame) in

2TALK project site: http://www.talk-project.org

Figure 1. Traditional architecture of spoken dialog systems.
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which the dialog act, user goal, and named entities are extracted by semantic

parser or statistical model. 

−Dialog Management (DM): This is the heart of the spoken dialog system because

it coordinates the activity of all components, controls the dialog flow, and

communicates with external applications. The DM should play many roles which

include discourse analysis, knowledge database query, and system action prediction

based on the discourse context.

−Natural Language Generation (NLG): The system responses are typically

generated as natural language with a list of content items from a part of the

external knowledge database (e.g., restaurant database) that answers the specific

user query or request.

− System Output: The system output can be visualized on a display if available and

synthesized by a text-to-speech (TTS) module or pre-recorded audio.

Among them, the DM is one of the central components within the spoken dialog

systems. The major role of the DM is to select correct system actions based on

observed evidences and inferred dialog states from the results of SLU (e.g., dialog act,

user goal, and discourse history). In addition, the DM should be able to handle errors

when the user input has ASR and SLU errors occurred by noises or unexpected

inputs.

The remainder of this article is concerned with the design issues of DM and the

variety of techniques and approaches developed to model dialogs. We start with a

brief introduction to the role and the design issues of the dialog manager to develop

the spoken dialog system in Section 2. Next, the recent approaches to model the

dialogs in the dialog management are summarized in Section 3. We also explain the

recent work of user simulation techniques to automatically evaluate the spoken dialog

systems (Section 4). Finally, we conclude with a brief summary in Section 5.

2. DIALOG MANAGEMENT

2.1 Role of Dialog Management

In general, the DM accepts the user's intention which is represented as a semantic

frame of SLU results, and outputs the system responses at a concept level. The

system responses have to reflect the discourse context by maintaining the discourse

history3. Although the roles of the DM may depend to some extent on the type of task

that is involved, the key roles include (Figure 2):

− Searching and providing query results by connecting to an external knowledge

database based on the current input and the discourse context

−Asking further slot information to submit an appropriate query

−Requesting to confirm unclear slot information and to rephrase if the user's input

is out-of-coverage

− Predicting the next system action at the concept level to output the system's

3The discourse history is usually stored in many different structures depending on the DM
design.
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utterance in NLG and TTS modules

−Controlling generic conversational mechanisms (e.g., barge-ins, backchannels,

multi-party dialogs) in human-human dialogs to implement more human-like

dialog systems

2.2 Degrees of Initiative

A dialog consists of a sequence of user and system turns which usually depend on the

discourse context. The process of dialog can be viewed as an exchange of information

in which the initiative may shift between the user and the system. The initiative

concerns who directs the progression of the dialog. In general, the degrees of initiative

in the spoken dialog system fall into one of the following strategies (Table I):

− System-initiative: The system has the initiative to guide the dialog at each step.

−User-initiative: The users takes a control of the dialogs, and the system responds

to whatever the user directs. 

−Mixed-initiative: The system has overall control of the dialogs. However, the users

can barge in and change the dialog direction.

In a system-initiative dialog, the system usually asks one or more questions to

extract some slots from the user step by step. After the slots are sufficiently filled, it

can submit an appropriate query to the external knowledge database. These dialogs

are generally constructed in such a way that the user's input is restricted to single

words or phrases that answer the previous system prompts. A major advantage of this

form of dialog control is that the user's inputs can be determined in advance because

a set of vocabulary and grammar for each response can be restricted. In this way,

such constraints of the search space in ASR and SLU models can significantly

improve speech recognition and understanding performance. For this reason, most

commercial systems are designed as system-initiative. However, the disadvantage is

that it takes much time to complete more complex tasks where many slots are

required to access information. In addition, the user's input is not natural because the

dialog flows are predetermined with a set of limited words and phrases.

In a user-initiative dialog, the user takes control of the dialog although the system

Figure 2. Role of Dialog Management.
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may sometimes ask confirmation questions if some slots are unclear. The user can

determine the questions to be asked and the role of the system is to answer the

questions. The advantage of this strategy is that it allows the user to converse with

the system freely and naturally. Actually, developing a user-initiative system is more

complicated than the system-initiative system because ASR and SLU should cover the

relatively larger size of vocabulary and grammar, and the DM should handle more

flexible dialog flows.

In a mixed-initiative dialog, the system is supposed to control dialog, but the user

can have some flexibility at times to provide more information or to change the task.

Therefore, mixed-initiative systems involve complex turn-taking mechanisms such as

handling barge-in utterances. For example, the user can take the initiative away from

the system when the user wants to ask new items which are different from the

focused items. In this case, the system follows the user request, or tries to direct the

user back to the original course. Recently, most advanced spoken dialog systems have

tried to address this type because it looks like human-human communication.

However, the certain problems should be solved to deploy this type of the dialog

system in the real world. For example, barge-in utterances are more difficult to detect

their boundaries and to recognize them correctly.

2.3 Error Handling

Since the performance in spoken language technologies such as ASR and SLU have

been improved, spoken dialog systems can be developed now for many different

application domains. Nevertheless, there are major problems for practical spoken

dialog systems. One of them which must be considered by the DM is the error

propagation from ASR and SLU modules. In general, errors in spoken dialog systems

are prevalent due to errors in speech recognition and language understanding. The

user's input may be unclear or incomplete because some or all of the words are

incorrectly recognized or even though all the words are correctly recognized, the SLU

module does not capture all the correct meanings due to data sparseness or

Table I. Examples of Dialog Initiative.

Initiative Types  Example

System-initiative 

System: Please state the name of the city which you are visiting.

User: New York.

System: Okay New York. What sort of cuisine would you like?

User: Korean.

User-initiative 

User: I want to go to Korean restaurant in New York.

System: There are 10 Korean restaurants in New York.

User: Where is Mapo BBQ?

Mixed-initiative 

System: Where are you going?

User: Korean restaurant in New York.

System: There are 10 Korean restaurants in New York. What is the

restaurant's name?

User: Are there any cheap ones?
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ambiguity. These errors can cause the dialog system to misunderstand a user and in

turn lead to an inappropriate response. To avoid these errors, a basic solution is to

improve the accuracy and robustness of the recognition and understanding processes.

However, it has been impossible to develop perfect ASR and SLU modules because of

noisy environments and unexpected inputs. Therefore, error handling is also an active

research topic in the dialog management problems to improve the performance of the

spoken dialog systems against ASR and SLU errors.

Error handling approaches in traditional DMs typically deal with these errors by

adopting dialog mechanisms for detecting and repairing potential errors at the

conversational level [McTear et al. 2005; Torres et al. 2005; Lee et al. 2007; Walker

et al. 2000; Bohus and Rudnicky 2005]. The most commonly used measure for error

detection is a confidence score computing in recognition and understanding processes

[Koo et al. 2001; Hazen et al. 2002; Lo and Soong 2005]. The decision to engage this

method is typically based on comparing the confidence score against the manually

preset threshold. However, confidence scores are not entirely reliable and are

dependent on noisy environments and user types. In addition, false acceptance, may

not be easy for the user to correct the system and put the dialog back on track. Thus,

it can bring some problems at the level of the DM. To address these problems, the DM

can adopt some error recovery strategies (e.g., explicit/implicit confirmation and

rephrasing) to repair these errors [Skantze 2005]. An explicit confirmation takes the

form of a question that asks explicitly for confirmation of the target slots of the task

(e.g., departure date, departure time, departure city in the flight reservation system).

This may be accompanied by a request to answer with “yes”' or “no”. The DM can also

use an implicit confirmation in which the system embeds in its next question a

repetition of its understanding of what the user said in the response to the previous

question. Explicit and implicit confirmation strategies are good to repair unreliable

information by computing confidence scores. In these cases, the user says a partial

phrase or a short utterance to acknowledge and confirm the target slot values.

However, the deficiency of context may lead to new recognition and understanding

errors. In addition, the distribution of user behaviors in coping with errors shows that

users who achieve successful error recoveries use significantly more rephrasals than

attempts to repair a chain of errors [Shin et al. 2002]. For these reasons, the rephrase

strategies are also used to repair errors by accepting a similar utterance to the

previous one. Recently, some groups have also investigated help generation

mechanisms because just repeating the previous utterance cannot always correct the

recognition and understanding errors [Hockey et al. 2003; Fukubayashi et al. 2006;

Lee et al. 2007]. For example, dynamic help generation was developed by estimating

the gap between user's mental model and the system [Fukubayashi et al. 2006]. They

represent the user's mental model on the domain concept tree in which each node has

known degrees that denote the degree of how much a user understands the concepts

corresponding to the nodes. The grammar and the domain concept trees are manually

designed by system developers to recover ASR and SLU errors. Examples of error

recovery strategies are shown in Table II.
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3. RECENT APPROACHES TO DIALOG MANAGEMENT

As mentioned in Section 2, the DM plays a key control role in the spoken dialog

systems given the current dialog state. In practice, the DM must find the best system

action to be done at the next turn by maintaining the discourse history. A number of

different approaches to the DM problem have been developed to date in the

community. The DM can be divided into three main approaches: (1) knowledge-based

dialog management, (2) data-driven dialog management, and (3) hybrid dialog

management.

3.1 Knowledge-based Dialog Management

Early dialog systems such as SUNDIAL [Peckham 1993] and ARISE [Lamel et al.

1999] were designed by application developers who have domain-specific knowledge.

These systems are usually confined to both highly structured tasks and system-

initiative dialogs, where a restricted and regularized language set can be expected.

This knowledge-based approach generally uses finite-state automata which often

involve handcrafted rules. These are dictated by the knowledge of the application, and

by continuous experiments with real users. It has been used for rapid prototyping of

dialog systems for strong-typed interactions with clearly-defined structures and goals

[McTear 1998] (Figure 3). This approach has also been deployed in many practical

applications because of its simplicity. However, hand-crafting rules in advance is

difficult, and its flow is inflexible. For example, if the users provide more information

that was requested by the system's question (over-informative), the system cannot

manage the dialog flow because it was not designed in such a case. It also suffers from

poor domain portability: when the designers develop a new application for a different

domain, the entire design process must be restarted from the beginning.

To overcome these limitations, several groups [Rich and Sidner 1998; Bohus and

Rudnicky 2003; Bui et al. 2004; Larsson and Traum 2006] have explored generic

Table II. Examples of Error Recovery Strategies.

Strategy Types  Example

Explicit Confirmation 

User: I want to go to Korean restaurant in New York.

System: So you want to go to Korean restaurant in New York? 

Please answer yes or no.

User: Yes.

Implicit Confirmation 

User: I want to go to Korean restaurant in New York.

System: What is the name of Korean restaurant in New York?

User: Mapo BBQ.

Static Rephrasal 

User: I want to go to Korean restaurant in New York.

System: Sorry. Would you please rephrase?

User: I'd like to go to Korean restaurant in New York.

Dynamic Rephrasal 

User: I want to go to Korean restaurant in New York.

System: Sorry. Would you please rephrase using expression “I'd like to

go to [RES-TYPE] in [LOC-ADDRESS]”.

User: I'd like to go to Korean restaurant in New York.
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dialog modeling approaches based on agenda or task models, which are powerful

representations for segmenting large tasks into smaller and more easily handled

subtasks. Several extensions are being investigated by using this approach. For

example, RavenClaw is one of the most popular dialog management frameworks

based on the agenda-based approach [Bohus and Rudnicky 2009]. The RavenClaw is

a two-tier dialog management framework that enforces a clear separation between the

domain-dependent and the domain-independent aspects of the dialog control logic.

Figure 3. Example of dialog graph for restaurant information system.

Figure 4. A portion of dialog task specification in RoomLine system.
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The domain-dependent aspects are captured by the dialog task specification, essentially

a hierarchical tree structure for the interaction (Figure 4), provided by the system

developer. A reusable, domain-independent dialog engine manages the conversation

by executing the given dialog task specification. However, the design process is still

time-consuming and expensive because the knowledge sources (e.g., hierarchical task

structure and plan recipes) are usually designed by human experts. To address this

problem, there are some approaches to automatically model prior knowledge from

dialog corpus [Roy and Subramaniam 2006; Bangalore et al. 2006; Lee et al. 2009a;

Griol et al. 2009]. For example, an unsupervised clustering technique was used to

automatically build a domain model (or topic structure) from call transcriptions in a

call routing domain [Roy and Subramaniam 2006].

3.2 Data-driven Dialog Management

More recently, the research community for DM has exploited the benefits of data-

driven approaches to ASR and SLU. Although a data-driven approach requires time-

consuming data annotation, the training is done automatically and requires little

human supervision. In addition, new systems can be developed at only the cost of

collecting new data for moving to a new domain; this requires less time and effort

than the knowledge-based approach. 

These advantages have motivated the development of stochastic dialog modeling

using reinforcement learning (RL) based on Markov decision processes (MDPs) [Levin

et al. 2000] or partially observable MDPs (POMDPs) [Williams and Young 2007]4.

These frameworks apply statistically data-driven and theoretically-principled dialog

modeling to dynamically allow changes to the dialog strategy. They accomplish this

by optimizing some reward or cost functions given the current dialog state using some

RL algorithms. In addition, POMDP-based DMs have the robustness to ASR and SLU

errors by supporting n-best recognition hypotheses to estimate the belief state. The

belief state is a distribution over the dialog states in the absence of knowing its state

exactly because the system makes only observations (e.g., ASR and SLU results)

about the real world which give incomplete information about the true current state.

The error handling can be easily implemented by maintaining the belief distribution

with no need of special mechanism. The variables of user context (e.g., expertise and

emotion) can be also naturally incorporated into the state space by the factored model.

However, practical deployment of RL-based dialog systems has encountered several

obstacles [Paek 2006]. For example, the optimized policy may remove control from

application developers and the refinement of the dialog control is difficult. These are

serious problems because the developers should have the opportunity to easily control

the dialog flow in practical systems. Many researchers are solving these problems in

their ongoing work [Williams and Young 2005; Lemon et al. 2006; Young et al. 2007;

Thomson et al. 2008; Williams 2008b]. For example, there are some studies on how

to mix traditional knowledge-based DM design with RL-based DM to reflect domain-

dependent business rules and to reduce the large policy space [Lemon et al. 2006;

4POMDP extends MDP by removing the requirement that the system knows its current
state precisely.
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Williams 2008b]. However, this approach still needs improvement before it can be

applied to developing practical dialog systems.

A supervised approach to DM has been developed which uses maximum likelihood

estimation of a stochastic model from human-human dialog corpus [Hurtado et al.

2005]. To avoid the data sparseness problem, this approach uses dialog register (DR)

representation, which is a data structure for keeping track of discourse history as

dialog state sequences. The DR contains the information about slot names and slot

values provided by the user throughout the previous history of the dialog.

Some example-based approaches have been presented that perform dialog modeling

using prepared dialog examples [Murao et al. 2003; Inui et al. 2001; Lee et al. 2009c].

These approaches assume that the same system actions are triggered in a similar

dialog state. Therefore, the next system action can be predicted when the DM finds

the dialog examples having a similar dialog state to the current dialog state. Although

the keyword spotting technique was commonly used to find the similar examples, the

dialog examples can be semantically indexed to generalize the data using semantic

constraints (e.g., dialog act, main goal, and slot-filling vector) to represent the dialog

state [Lee et al. 2009c]. The best example is then selected among the candidate

examples by calculating heuristic similarity measures between the current input and

the example.

3.3 Hybrid Approaches to Dialog Management

Traditional RL-based DMs require a large number of dialog corpora to learn an

optimal policy because of a very large state space and a very large policy space. To

address this problem, user simulation techniques have been widely used to generate

a large number of simulated dialogs which are generalized from limited real corpora

based on specific user models [Pietquin and Dutoit 2006; Schatzmann et al. 2007]. In

a recent research, a hybrid approach to integrate reinforcement and supervised

learning has been also proposed to optimize dialog policies with a fixed dialog corpus

[Henderson et al. 2008]. This approach can eliminate the need for a large number of

dialog corpora to optimize the dialog policies in traditional RL-based dialog systems.

In this approach, RL is used to optimize a measure of dialog reward, while supervised

learning is used to restrict the learnt policy to the portion of the space for which data

are available.

In the classical POMDP formulation, the optimization process is free to choose any

action at any time. As a result, there is no obvious way to incorporate domain

knowledge or constraints such as business rules. For example, it is obvious that the

system should never prescribe any medicine before it has asked for the patient's

symptoms in a medical domain. However, there is no direct way to consider this to

the optimization process. The unifying method was proposed to constrain the set of

possible actions based on conventional rules in the POMDP framework [Lemon et al.

2006; Williams 2008b]. In this approach, the optimization process runs faster and

more reliably than in a classical POMDP because spurious action choices are pruned

by the conventional rules.

In addition, traditional example-based DMs have critical problems in deploying

practical spoken dialog systems such as both lack of prior knowledge and weakness
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to ASR and SLU errors. To solve these problems, a novel hybrid approach in which

both dialog examples and a prior knowledge are used has been presented to improve

the robustness of example-based DM [Lee et al. 2009b]. In this approach, an agenda

graph as prior knowledge is one of the subtask flows to encode the domain-dependent

dialog control to complete the task. This knowledge is used to predict the next system

action and to handle an unexpected focus shift by keeping track of the dialog state

using the agenda graph. In addition, n-best recognition hypotheses are re-ranked by

reflecting heuristics for computing both utterance-level and discourse-level scores.

4. EVALUATION OF SPOKEN DIALOG SYSTEMS

Evaluation of spoken dialog systems is essential for developing and improving the

systems and for assessing their performance. The quantitative evaluation metrics

have been used for assessing their performance such as task completion rate for

measuring dialog success (e.g., dialog success rate, actual/perceived task completion,

task success rate), dialog length of measuring dialog costs (e.g., average turn length

and dialog turns), and heuristic score function of measuring weighted sum of the

dialog success and the dialog costs (e.g., reward, dialog score, and average score)

[Walker et al. 1997; Lemon et al. 2006b].

In general, humans are employed to evaluate the systems, but employing and

training human evaluators are expensive. Furthermore, qualified human users are

not always immediately available. These inevitable difficulties of working with human

users can cause huge delays in development and assessment of spoken dialog systems.

To avoid the problems that result from using humans to evaluate systems, developers

have widely used dialog simulation, in which a simulated user interacts with a system

[Schatzmann et al. 2005; López-Cózar et al. 2003; Jung et al. 2009]. User simulation

for spoken dialog systems involves following essential problems: 1) user intention

simulation, 2) user surface simulation, and 3) error simulation. 

Typical spoken dialog systems deal with the dialog between a human user and a

machine. Human users utter spoken language to express their intention, which is

recognized, understood and managed by ASR, SLU and DM modules. The general

architecture of a user simulator is separated into two levels: user intention and

utterance simulators (Figure 5). The user intention simulator accepts the discourse

contexts with system intention as input and generates the next user intention. The

user utterance simulator constructs a corresponding user sentence to express the

given user intention. The simulated user sentence is fed to the ASR channel

simulator, which then adds noise to the utterance.

This noisy utterance is passed to a dialog system which consists of SLU and DM

modules. The dialog system understands the user utterance, manages the dialog and

passes the system intention to the user simulator. The user simulator, ASR channel

simulator and dialog system continue the conversation until the user simulator

generates an end to the dialog. 

4.1 User Intention Simulation

The task of user intention simulation is to generate subsequent user intentions given

current discourse contexts. The intention is usually represented as abstracted user's
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goals and information on the user's utterance (surface). 

Therefore general user intention simulation in spoken dialog systems takes the

following probabilistic formula.

P(user intention|discourse context)

For example, in the case of a user simulation and spoken dialog system of [Lee et

al. 2009c; Jung et al. 2009], they defined the user intention state S = [dialog_act,

main_goal, component_slot], where dialog_act is a domain-independent label of an

utterance at the level of illocutionary force (e.g. statement, request, wh_question) and

main_goal is the domain-specific user goal of an utterance (e.g. give_something,

tell_purpose). Component slots represent domain-specific named-entities in the

utterance. For example, in the user intention state for the utterance “I want to go to

City Hall” (Figure 6), the combination of each slot of semantic frame represents the

state. In this example, the state symbol is ‘request+search_loc+[loc_name]’. The

discourse context can be varied according to intention modeling methods. 

There are two main approaches in the user intention simulator implementation:

knowledge-based and data-driven approaches. 

A knowledge-based intention model is built up from human discourse knowledge. It

Figure 5. Overall architecture of dialog simulation.

Semantic Frame for User Inention Simulation

raw user utterance  I want to go to city hall.

dialog_act  request 

main_goal  search_loc

component.[loc_name] cityhall

Figure 6. Example of semantic frame on car navigation domain.
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generates correct and reasonable user response under the coverage of designed rules.

In a knowledge based intention simulation approach, the developer can create

different rules that determine the behavior of the simulated user given the discourse

information [Chung 2004; López-Cózar et al. 2003; López-Cózar et al. 2006]. Schatzmann

et al. proposed an agenda-based user simulation technique for bootstrapping a

statistical dialog manager without access to training data [Schatzmann et al. 2007].

It simulates user behavior based on a compact representation of the user goal and a

stack-like user agenda. It is usually hard to design all possible rules which cover the

diverse circumstances caused by ASR, SLU, and DM errors. Also, designing rules for

a user model from the bottom is as difficult as designing a new dialog managing

model. 

On the other hand, data-driven user intention modeling is relatively easy to build

up if we have enough data since most of the probabilistic methods are domain- and

language independent. There are several domain-independent data-driven user

intention modeling methods. The pioneering work of Eckert et al. introduced a simple

n-gram model for predicting the user intention [Eckert et al. 1997]. In later work of

the same group, they describe how the pure bigram model can be modified to account

for a more realistic degree of structure in dialog [Levin et al. 2000]. Pietquin's model

[Pietquin 2004] extended Levin's model with simple representations of user goal,

memory and satisfaction. 

Georgila et al. proposed a linear feature combination to map from an intention state

to a vector of real-valued features [Georgila et al. 2005]. Graphical model-based user

intention simulation was also proposed. Cuayahuitl et al. presented a method for

intention simulation based on Hidden Markov Models and Input-Output Hidden

Markov Models [Cuayahuitl et al. 2005]. Another graphical model based user

intention simulation method is Conditional Random Fields (CRF) [Lafferty et al.

2001] based intention model [Jung et al. 2009]. In their work, sequential behaviors of

dialog participants are modeled with a linear chain between state nodes. Also

arbitrary facts are captured to describe the discourse context in the form of indicator

functions. In their work, the user intentions are represented as states, and the

discourse information is represented as observations (Figure 7). The example of

discourse context for a linear-chain CRF based intention model is illustrated in Figure

8.

Another direction of user intention simulation is taking hybrid approach. Recently

Figure 7. Conditional Random Fields for User Intention Modeling. UIt: User Intention; DIt: Dis-

course Information for the tth user turn.
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[Jung et al. 2009] introduced a hybrid user intention modeling using Markov logic

[Richardson and Domingos 2006]. They proposed a data-driven user intention modeling

technique which can be diversified or personalized by integrating human discourse

knowledge which is represented in first-order logic. The framework can easily and

selectively integrate diverse types of user knowledge into a data-driven user intention

simulation. They implemented a cooperative, corrective and self-directing users,

respectively, in their framework. 

Although there are no generally accepted evaluation metrics as to what constitutes

a good intention model in dialog simulators, the evaluation metrics has been recently

investigated to automatically determine the quality of the simulated dialogs [Schatzmann

et al. 2005; Williams 2008a; Ai and Litman 2008]. For example, Schatzmann et al.

provided a broad set of tests to evaluate user simulations such as bigram, Levin's, and

Pietquin's models by comparing simulated and real dialogs [Schatzmann et al. 2005].

The simulated user responses were compared to real user responses in an unseen test

set to assess how the generated dialogs are as natural as a real user's behavior, and

the corpora of simulated dialogs were also compared to real corpora because this

indicates how well the simulation covers the variety of user behavior in the training

data. They presented the precision and recall measures of simulated vs. real user

responses, and the distribution of turn lengths, dialog lengths, a ratio of system and

user actions per dialog. In addition, some researchers proposed the rank-ordered

evaluation metric based on the Cramér-von Mises divergence between the distribution

of dialog scores in the real and simulated dialogs [Williams 2008a] and human

judgments as the gold standard [Ai and Litman 2008].

4.2 User Utterance Simulation

A user utterance simulation technique is needed to investigate the performance of the

dialog system since the simulations that are restricted to only the intention level are

not sufficient to evaluate the performance of all dialog system components because the

spoken dialog system is heavily influenced by the performance of the SLU as well as

the DM. 

User utterance simulation generates surface level utterances which express a given

Figure 8. Example feature design for navigation domain.
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user intention. For example, if users want to go somewhere and provide place name

information, we need to generate corresponding utterances (e.g. “I want to go to

[place_name]” or “Let's go to [place_name]”). There can be many semantically equivalent

sentences which express the corresponding user intention. This is formulated as

follows:

P(W|user intention),

where W={w1, w2,...,wN} is a word (wn) sequence. 

Chung tried to use the natural language generation module of [Seneff 2002l to

generate this surface [Chung 2004]. López-Cózar et al. collected real human utterances,

and selected and played the voice to provide input for the spoken dialog system

[López-Cózar et al. 2003]. Schatzmann et al. presented an utterance generation model

based on co-occurring frequency [Schatzmann et al. 2007]. A generative maximum-

likelihood model for predicting user utterance for a given user act is built by obtaining

the appropriate relative frequency statistics from transcribed and annotated dialog

corpus. 

Recently, Jung et al. proposed a two-phase user utterance simulation method [Jung

et al. 2009]. In the first phase, the process of generating structures and word

sequences is iterated sufficient times to generate many different structure tags and

word sequences which may occur in real human expressions. In the second phase,

good user utterances are selected by the naturalness measure. In their work, to

measure the naturalness of a generated utterance, the Structure and Word interpolated

BLEU score (SWB) is calculated from the structural sequence BLEU score and lexical

sequence BLEU score. BLEU (Bilingual Evaluation Understudy) score is widely used

for automatic evaluation in statistical machine translation [Papineni et al. 2002].

4.3 ASR Channel Simulation

ASR channel simulation generates speech recognition errors which might occur in the

real speech recognition process. Furthermore, the ASR channel simulator which can

allow a developer to set the simulated word error rate (WER) between 0 and 1 is

desirable. Therefore, the ASR channel simulation problem is generating noise-added

user utterance Wnoisy from a noise-free user utterance Wclean reflecting the error

degree of WER. 

The goal of error simulation is generating appropriate automatic speech recognition

(ASR) errors or spoken language understanding errors on generated user intentions

and utterances. Previous work on ASR channel simulation has investigated a number

of different techniques. Some of the approaches directly set the error rate on the type

of task [Pietquin and Renals 2002] and the individual speaker [Prommer et al. 2006].

The simulated word error rate can also be set to approximate the distribution found

in the speech data [Georgila et al. 2005; Lemon et al. 2006b]. The ASR channel

simulation based on phonetic confusions has been explored. Word sequences are

mapped to phone or syllable sequences using a pronunciation dictionary and

confusions are then generated using a set of probabilistic phoneme conversion rules

[Deng et al. 2003], a handcrafted phone confusion matrix [Pietquin 2004] or a

weighted finite state transducer [Fosler-Lussier et al. 2002; Stuttle et al. 2004].
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Schatzmann et al. proposed ASR-confusions methods [Schatzmann et al. 2007]. In

their work, erroneous utterances are generated based on word fragment-to-fragment

alignment. A computationally less expensive word-level error simulation method has

been suggested by [Pietquin and Dutoit 2006]. Jung et al. proposed another acoustic-

linguistic knowledge based ASR channel simulation [Jung et al. 2009]. In their

research, phone confusion models are used to generate ASR errors. However, an

actual training corpus is not used to build confusion models. Instead the phone

confusion models are built based on linguistic knowledge to implement a simple ASR

channel simulator. The problem of finding an acoustic distance can be considered as

an alignment problem between two sequences of symbols. In this work, the dynamic

global alignment algorithm of [Needleman and Wunsch 1970] is used for both syllable

and phoneme sequence alignment. 

Figure 9 shows the example of an ASR channel simulation which is based on [Jung

et al. 2009]'s method. The method involves four steps: 1) Determining error position,

2) Generating error types on error marked words, 3) Generating ASR errors such as

substitution, deletion and insertion errors, and 4) Rescoring and selecting simulated

erroneous utterances. 

4.4 User Simulation Criteria

Since simulated users are developed to replace a real user, the fundamental criterion

of a user simulation is how the simulated patterns are as natural as a real user's

behavior. In user intention simulation, the simulated intention should be natural to

the corresponding discourse context. In the user surface simulation, the generated

user utterance should be as natural as a real user's utterance. In an ASR channel

simulation, the noise-added sentences are similar to the recognized sentences by a

real ASR. 

Unlike the other natural language problems such as text classification and spoken

Figure 9. Example of ASR channel simulation.
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language understanding where naturalness and accuracy are important, variety is

another important criterion in user simulation. Since one of the main goals of user

simulation is evaluating spoken dialog systems with various environments, generating

diverse intention, surface and error patterns are desirable. 

Another important criterion of user simulation is controllability. Developers want to

test their dialog systems in a specific environment they want. Therefore successful

user simulation should allow controllability by developers to manipulate the

characteristics of simulated users. It might be a user type control in intention level.

Grammar level or fluency level control might be necessary in surface simulation.

Word error rate control is a basic controllability for ASR channel simulation.

5. SUMMARY

This paper has provided a review for recent approaches to dialog management in

spoken dialog systems. The dialog management techniques are very important to

control the interaction with the user and to communicate with external knowledge

sources. Error handling is also closely related to the dialog management problem to

improve the robustness of the spoken dialog systems in a noisy environment. Recently,

a number of approaches to dialog management have been developed to deploy a

practical spoken dialog system in the real world. Data-driven approaches can be used

to easily build the dialog management strategies and to overcome the problems

arising from traditional knowledge-based approaches. In addition, hybrid approaches

can solve the complexity problem of RL-based dialog systems and improve the usability

of spoken dialog systems. The user simulation techniques have also been focused on

automatically evaluating the spoken dialog systems.

Looking to the future, it can be expected that spoken dialog systems will become

more widely used and accepted in the real world. However, there are still some

challenges that need to be overcome. First, it is important to develop methods that

compensate for poor speech recognition rate, such as the error handling and the

robust dialog modeling techniques. In addition, the spoken dialog systems should be

developed to new types of applications and new areas of deployment that go beyond

the telephone-based systems for simple information-access dialogs. For example, a

broader acceptance of language learning systems using spoken dialog technology could

reduce education expenses for learning foreign languages. Finally, enabling spoken

dialog systems to automatically learn from experiences (e.g., dialog logs) is an

important new research topic.
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