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Nonnegative matrix factorization (NMF) is a popular method for multivariate analysis of
nonnegative data, which is to decompose a data matrix into a product of two factor matrices
with all entries restricted to be nonnegative. NMF was shown to be useful in a task of clustering
(especially document clustering), but in some cases NMF produces the results inappropriate to
the clustering problems. In this paper, we present an algorithm for orthogonal nonnegative
matrix factorization, where an orthogonality constraint is imposed on the nonnegative
decomposition of a term-document matrix. The result of orthogonal NMF can be clearly
interpreted for the clustering problems, and also the performance of clustering is usually better
than that of the NMF. We develop multiplicative updates directly from true gradient on Stiefel
manifold, whereas existing algorithms consider additive orthogonality constraints. Experiments
on several different document data sets show our orthogonal NMF algorithms perform better in
a task of clustering, compared to the standard NMF and an existing orthogonal NMF.

Categories and Subject Descriptors: H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval−Clustering

General Terms: Document Clustering, Nonnegative Matrix Factorization

Additional Key Words and Phrases: Multiplicative Updates, Orthogonal Nonnegative Matrix
Factorization, Stiefel Manifold

1. INTRODUCTION

Nonnegative matrix factorization (NMF) is a multivariate analysis method which is

proven to be useful in learning a faithful representation of nonnegative data such as

images, spectrograms, and documents [Lee and Seung 1999]. NMF seeks a

decomposition of a nonnegative data matrix into a product of basis and encoding

matrices with all of these matrices restricted to have only nonnegative elements. NMF
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allows only non-subtractive combinations of nonnegative basis vectors to approximate

the original nonnegative data, possibly providing a parts-based representation [Lee

and Seung 1999]. Incorporating extra constraints such as locality and orthogonality

was shown to improve the decomposition, identifying better local features or providing

more sparse representation [Li et al. 2001]. Orthogonality constraints were imposed

on NMF [Ding et al. 2006], where nice clustering interpretation was studied in the

framework of NMF.

One of prominent applications of NMF is document clustering [Xu et al. 2003;

Shahnaz et al. 2006], where a decomposition of a term-document matrix is considered.

NMF finds bases representing the significant terms in each cluster, and encodings

representing the cluster where each document belongs. However, the bases found by

NMF form a convex cone containing data points, and in some cases it does not

correspond to the clusters we wish to find. On the other hand, the orthogonal NMF,

which is the NMF with orthogonality constraints on the encoding matrix, can find the

basis matrix and encoding matrix having clear interpretation in the clustering

problems. Each basis found by orthogonal NMF indicates the direction to the center

of each cluster in the data, and the encoding value for a document clearly indicates

the corresponding cluster for the document. In fact, orthogonal NMF is shown to be

equivalent to the k-means clustering in the sense of the objective function [Ding et al.

2005].

Orthogonality can be imposed on NMF by using standard Lagrangian multiplier

method [Ding et al. 2006]. In this paper we take a different approach which exploits

the geometric structure of the constraint space. The rectangular matrices constrained

to be orthogonal forms a Stiefel manifold, and the learning on the Stiefel manifold has

been studied on the differential geometry community [Smith 1993; Edelman et al.

1998]. We employ the natural gradient on the Stiefel manifold to derive a multiplicative

update algorithm which preserves both the orthogonality and the nonnegativity.

Experiments on several different document data sets show our orthogonal NMF

algorithms perform better in a task of clustering, compared to the standard NMF and

an existing orthogonal NMF. This is an extension of our earlier work which was

presented in [Choi 2008; Yoo and Choi 2008].

The rest of this paper is organized as follows. Section 2 explains about the document

clustering problem and how NMF can be applied for the problem. Probabilistic

interpretation of NMF model shows the relationship between the factorization result

and the clustering interpretation. Section 3 shows how the orthogonality constraints

on NMF brings better clustering results, and reviews the existing orthogonal NMF

algorithm [Ding et al. 2006]. Section 4 introduces the computation of gradient and

geodesics on Stiefel manifold, and then proposes our orthogonal NMF algorithm

which uses the gradient on the Stiefel manifold. Section 5 shows the evaluation of the

proposed algorithm on the document clustering problems with document datasets.

Finally, Section 6 concludes the paper.

2. NMF FOR DOCUMENT CLUSTERING

In the vector-space model of text data, each document is represented by an m-

dimensional vector xt ∈ R
M, where M is the number of terms in the dictionary. Given
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N documents, we construct a term-document matrix xt ∈ R
M ×N where Xij corresponds

to the significance of term ti in document dj that is calculated by

,

where TFij denotes the frequency of term ti in document dj and DFi represents the

number of documents containing term ti. Elements Xij are always nonnegative and

equal zero only when corresponding terms do not appear in the document.

NMF seeks a decomposition of X∈ R
M ×N that is of the form

X ≈ UVT, (1)

where U∈ R
M × K and V∈ R

N × K are restricted to be nonnegative matrices as well and

K corresponds to the number of clusters when NMF is used for clustering. Matrices

U and V, in general, are interpreted as follows.

− When columns in X are treated as data points in m-dimensional space, columns in

U are considered as basis vectors (or factor loadings) and each row in V is encoding

that represents the extent to which each basis vector is used to reconstruct each

data vector.

− Alternatively, when rows in X are data points in N-dimensional space, columns in

V correspond to basis vectors and each row in U represents encoding.

Applying NMF to a term-document matrix for document clustering, each column of

X is treated as a data point in m-dimensional space. In such a case, the factorization

(1) is interpreted as follows.

−Uij corresponds to the degree to which term ti belongs to cluster cj. In other words

column j of U, denoted by uj, is associated with a prototype vector (center) for cluster

cj.

−Vij corresponds to the degree document di is associated with cluster j. With

appropriate normalization, Vij is proportional to a posterior probability of cluster cj
given document di. More details on probabilistic interpretation of NMF for document

clustering are summarized in Sec. 2.2.

2.1 Multiplicative updates for NMF

We consider the squared Euclidean distance as a discrepancy measure between the

data X and the model UVT, leading to the following least squares error function

, (2)

where  represents the Frobenius norm of a matrix. NMF involves the following

optimization:

 , (3)

for the nonnegative input matrix X. Gradient descent learning (which is additive

Xij = TFij log 
N

DFi

------------⎝ ⎠
⎛ ⎞

E = 
1
2
--- X UV

T
–

2

· 

arg min
U 0≥ , V 0≥

E = 
1
2
--- X UV

T
–

2
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update) can be applied to determine a solution to (3), however, nonnegativity for U

and V is not preserved without further operations at iterations.

On the other hand, a multiplicative method developed in [Lee and Seung 2001]

provides a simple algorithm for (3). We give a slightly different approach from [Lee

and Seung 2001] to derive the same multiplicative algorithm. Suppose that the

gradient of an error function has a decomposition that is of the form

,  (4)

where > 0 and > 0. Then multiplicative update for parameters has Θ the

form

⊙ , (5)

where ⊙ represents Hadamard product (elementwise product), (÷) represents

elementwise division, (· )·η denotes the elementwise power and η is a learning rate (0

< η ≤ 1). It can be easily seen that the multiplicative update (5) preserves the

nonnegativity of the parameter Θ, while = 0 when the convergence is achieved.

Derivatives of the error function (2) with respect to U with V fixed and with respect

to V with U fixed, are given by

, (6)

. (7)

With these gradient calculations, the rule (5) with η = 1 yields the well-known Lee

and Seung's multiplicative updates [Lee and Seung 2001]

⊙ , (8)

⊙ .  (9)

2.2 Probabilistic interpretation and normalization

Probabilistic interpretation of NMF, as in probabilistic latent semantic indexing

(PLSI), was given in [Gaussier and Goutte 2005] where equivalence between PLSI

and NMF (with I-divergence) was shown.

Let us consider the joint probability of term and document, p(ti,dj), which is

factorized by

p(ti, dj) =

, (10)

where p(ck) is the prior probability for cluster ck. Elements of the term-document

matrix, Xij, can be treated as p(ti, dj), provided Xij are divided by 1TX1 such that ΣiΣj

Xij = 1 where 1 = [1, . . . , 1]T with appropriate dimension.

∇E = ∇E[ ]+ − ∇E[ ]−

∇E[ ]+ ∇E[ ]−

Θ Θ←
∇E[ ]−

∇E[ ]+
----------------⎝ ⎠
⎛ ⎞

.η

∇E

∇UE = ∇UE[ ]+− ∇UE[ ]− = UV
T
V −XV

∇VE = ∇VE[ ]+− ∇VE[ ]− = VU
T
U −X T

U

U U← XV

UV
T
V

----------------

V V← X
T
U

VU
T
U

-----------------

 

k

∑ p ti,dj|ck( )p ck( )

=  

k

∑ p ti|ck( )p dj|ck( )p ck( )
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Relating (10) to the factorization (1), Uik corresponds to p(ti|ck), representing the

significance of term ti in cluster ck. Applying sum-to-one normalization to each column

of U, i.e.,  where DU ≡ diag (1TU ), we have an exact relation

.

Assume that X is normalized such that ΣiΣjXij = 1. We define a scaling matrix

DV ≡ diag (1TV ). Then the factorization (1) can be rewritten as

.  (11)

Comparing (11) with the factorization (10), one can see that each element of the

diagonal matrix D≡ DUDV corresponds to cluster prior p(ck). In the case of

unnormalized X, the prior matrix D absorbs the scaling factor, therefore in practice,

the data matrix does not have to be normalized in advance.

In a task of clustering, we need to calculate the posterior of cluster for a given

document p(ck|dj). Applying Bayes' rule, the posterior of cluster is given by the

document likelihood and cluster prior probability. That is, p(ck|dj) is given by

p(ck|dj) ∝ p(dj|ck)p(ck)

= 

= 

= . (12)

It follows from (12) that (V DU)T yields the posterior probability of cluster, requiring

the normalization of V using the diagonal matrix DU. Thus, we assign document dj

to cluster k* if

k* = arg
k
max[V DU]jk. (13)

Document clustering by NMF was first developed in [Xu et al. 2003]. Here we use

only different normalization and summarize the algorithm below.

3. ORTHOGONAL NMF FOR DOCUMENT CLUSTERING

3.1 Orthogonality for clustering

NMF usually works well for the clustering problems by finding a convex cone which

contains all the data points. However, there exist some cases where the axes of the

Algorithm outline: Document clustering by NMF

(1) Construct a term-document matrix X.

(2) Apply NMF to X, yielding X = UV
T.

(3) Normalize U and V :

U ← ,

V ← ,

 where DU = 1
T
U.

(4) Assign document dj to cluster k
* if

k
* = arg

k
max Vjk.

UDU
1–

UDU
1–[ ]ik = p ti|ck( )

X = UDU
1–( ) DUDV( ) VDV

1–( )
T

D V DV
1–( )

T

[ ]kj

DUDV( ) DV
1–
V

T( )[ ]kj

DUV
T[ ]kj

UDU

1–

VDU
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convex cone do not correspond to the clusters we want to find. Figure 1(a) shows an

example of such cases. The example data clearly consists of three clusters, however,

NMF can reconstruct these data with the combinations of only two bases, so the

remaining basis goes toward a meaningless direction. Although NMF can reconstruct

all the data points with very small error, the clustering fails in this case.

We can obtain results more appropriate for the clustering problems by imposing

orthogonality constraints on the encoding matrix, that is V T
V = I with the identity

matrix I with appropriate dimension. In this orthogonal NMF, the encoding matrix

should satisfy both orthogonality and nonnegativity constraints. As a result, we can

find the encoding matrix which has a form of a cluster indicator matrix, where only

one nonzero element exists in each row. Note that if a row has more than two nonzero

elements, the matrix cannot satisfy the orthogonality constraint because some non-

diagonal elements of V T
V also become nonzero. By applying orthogonal NMF, each

data point is represented by only one basis vector, even if the point can be represented

by some combination of several basis vectors. Because of this characteristic,

orthogonal NMF can produce the results more appropriate for the clustering problems

(Fig. 1(b)). Moreover, to minimize the error in these constraints, each basis vector

indicates the center of the corresponding cluster, which is good for the interpretation

for the clustering.

3.2 Orthogonal NMF and the previous approach

In general, orthogonal NMF involves a decomposition (1) as in NMF, but requires that

U or V satisfies the orthogonality constraint such that U T
U = I or V T

V = I [Choi

2008]. As stated in the previous section, we consider the case where V T
V = I is

incorporated into the optimization (3). In this section, we review the existing

orthogonal NMF method presented in [Ding et al. 2006].

Figure 1. A synthetic example comparing NMF and orthogonal NMF in a clustering problem which

has three underlying clusters. The dots represent the data points and the dotted lines represent the

direction of the basis vectors obtained by the NMF or orthogonal NMF algorithms. (a) NMF fails to

find three clusters correctly in this case, because the algorithm builds a convex cone containing all

the data points by the learnt basis vectors. (b) Orthogonal NMF correctly finds underlying clusters,

because the algorithm matches exactly one basis for each data point.
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Orthogonal NMF with V T
V = I is formulated as the following optimization problem:

 

subject to .  (14)

In [Ding et al. 2006], the constrained optimization problem (14) is solved by introducing

a Lagrangian with a penalty term

{Λ ,  (15)

where Λ is a symmetric matrix containing Lagrangian multipliers. The gradient of L

with respect to the matrix V can be calculated by

Λ.  (16)

The Lagrangian multiplier Λ in above equation is approximated to be Λ = ,

hence the gradient becomes

(17)

Applying the relation (5) to the above gradient leads the following multiplicative

update rule for the matrix V,

⊙ .  (18)

The update rule for the unconstrained matrix U is the same as (8). In the remaining

of the paper, we will call this algorithm as DTPP.

The probabilistic interpretation of the result of orthogonal NMF is the same to the

case of NMF, because both methods are based on the same two-factor decomposition

model. We can determine the clusters for given data by applying (13) to the learned

factor matrix V after an appropriate normalization.

4. ORTHOGONAL NMF ON STIEFEL MANIFOLD

In this section, we present a new method for orthogonal NMF based on the structure

of the manifold arisen from constrained matrices. The constraint surface which is the

set of N × K orthonormal matrices V such that V T
V = I is known as the Stiefel

manifold [Stiefel 1936]. We will introduce how the important quantities on the Stiefel

manifold can be computed, and then derive the multiplicative update rule for the

orthogonal NMF by using the gradient on the Stiefel manifold.

4.1 Gradient and geodesic on the Stiefel manifold

Minimizing (2) where V is constrained to the set of N × K matrices such that V T
V

= I was well studied in [Smith 1993; Edelman et al. 1998; Nishimori and Akaho

2005]. Here we present the equations for computing the gradients and geodesics,

which are the important quantities in developing algorithms on the Stiefel manifold.

arg min
U V,

E = 
1
2
--- X UV

T
–

2

V
T
V = I, U 0≥ , V 0≥

L = 
1
2
--- X UV

T
–

2
 + 

1
2
---tr V

T
V I–( )}

∇VL = X
T
U + UV

T
V + V

V
T
X

T
U −U T

U

∇VL = X–
T
U + VU

T
U + V V

T
X

T
U U

T
U–( )

= X–
T
U + VU

T
X

T
U

V V← X
T
U

VU
T
X

T
U

-------------------------
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An equation defining tangents to the Stiefel manifold at a point V is obtained by

differentiating V T
V = I, yielding

V
T
∆ + ∆T

V = 0,  (19)

i.e., V T
∆ is skew-symmetric. The canonical metric on the Stiefel manifold [Edelman et

al. 1998] is given by

gc(∆, ∆) = tr , (20)

whereas the Euclidean metric is given by

ge(∆, ∆) = tr{∆T ∆}.  (21)

We define the partial derivatives of E with respect to the elements of V as

[ E]ij = . (22)

For the function E (2) (with U fixed) defined on the Stiefel manifold, the gradient of

E at V is defined to be the tangent vector  such that

ge( E, Δ) = tr {( E)TΔ}

 = gc ( , Δ)

 = tr , (23)

for all tangent vectors ∆ at V.

Solving (23) for  such that  is skew-symmetric yields

.  (24)

This gradient indicates the steepest direction the function E ascends in the Stiefel

manifold.

The natural movement on the manifold can be determined by the geodesic of the

manifold. The geodesic on the Stiefel manifold from a point V toward a direction 

with length t can be calculated as

(25)

where D = (I − VV
T)Δ [Edelman et al. 1998; Nishimori and Akaho 2005]. To

minimize an objective function, we can follow the geodesic toward the opposite

direction of the gradient of the function, which can be calculated by

.  (26)

If we move along the geodesic, the learning does not escape from the Stiefel manifold,

so we can find an exact orthogonal solution.

4.2 Multiplicative updates on Stiefel manifold

The most natural way to minimize the function while V satisfies the orthogonality

constraints is following the geodesic on the Stiefel manifold along the direction of the

ΔT
I

1
2
---VV

T
–⎝ ⎠

⎛ ⎞Δ
⎩ ⎭
⎨ ⎬
⎧ ⎫

∇V
∂E
∂Vij

----------

∇̃VE

∇V ∇V

∇̃VE

∇̃VE( )
T

I
1
2
---– VV

T

⎝ ⎠
⎛ ⎞Δ

⎩ ⎭
⎨ ⎬
⎧ ⎫

∇̃VE V
T

∇̃VE

∇̃VE = ∇VE −V ∇VE( )TV

∇

ϕ V, Δ, t( ) = exp t DV
T

VD
T

–( ){ }V

1

2
---

ϕ V, ∇VE– , t( ) = exp t ∇VEV
T

V∇VE
T

–( ){ }V
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negative gradient (26). However, our problem has additional nonnegative constraints

on the matrix V, so we cannot simply follow the geodesics to find our solution. The

formula for the geodesics is based on the calculation of the matrix exponential, which

is not constrained to be nonnegative and not possible to decompose like (4). Therefore,

we cannot guarantee that the solution from the geodesic search remains nonnegative.

Different to the case of geodesics, the gradient on the Stiefel manifold (24) consists

of only sum and product of the nonnegative matrices, so we can build a multiplicative

update rule from the gradient to preserve the nonnegativity of the factor matrix. The

gradient of some manifold lies on the tangent plane of the manifold, therefore if we

move along the gradient the resulting point slightly escapes from the manifold. In the

case of the Stiefel manifold, we can rescale the size of each column to be 1 to prevent

the solution to diverge [Nishimori and Akaho 2005].

The gradient on the Stiefel manifold for the objective function (14) can be computed

by using (24) as

 = 

 = . (27)

Invoking the relation (5) with replacing  by  yields

⊙ .  (28)

We have to rescale the size of columns of V to be 1 by using , where DV

= diag(1TD). The updating rule for the unconstrained matrix U is the same as (8). In

the remaining of the paper, we will call this algorithm as ONMF.

5. EXPERIMENTS

We tested the ONMF algorithm on the six standard document datasets (CSTR, k1a,

k1b, re0, and re1) and compared the performance with the standard NMF and the

Ding et al.'s orthogonal NMF (DTPP) [Ding et al. 2006]. The statistics of the datasets

are summarized in Table I.

We applied the stemming and stop-word removal for each dataset, and select 1,000

terms based on the mutual information with the class labels. Normalized-cut

weighting [Xu et al. 2003] is applied to the input data matrix.

We use the clustering accuracy (CA) and normalized mutual information (NMI) to

compare the performance of different clustering algorithms. To compute the clustering

accuracy, we first applied Kuhn-Munkres maximal matching algorithm [Lovasz and

Plummer 1986] to find the appropriate matching between the clustering result and

the target labels. If we denote the true label for the document n to be cn, and the

matched label , CA can be computed by

CA = ,

where δ(x, y) = 1 for x = y and δ(x, y) = 0 for .

∇̃VE = X
T
U– VU

T
U+( )−V X

T
U– VU

T
U+( )

T

V

VU
T
XV − X

T
U

∇̃VE[ ]
+

− ∇̃VE[ ]
−

∇V ∇̃V

V V← X
T
U

VU
T
XV

----------------------

V V← DV
1–

c̃n

Σn 1=

N
δ cn, c̃n( )
N

----------------------------------

x y≠



106 Jiho Yoo and Seungjin Choi

Journal of Computing Science and Engineering, Vol. 4, No. 2, June 2010

NMI is based on the mutual information (MI) between the set of estimated clusters

C and the set of ground-truth clusters , which can be calculated by

NMI(C, ) =   ,

where Ci is the set of documents grouped into the i-th cluster,  is the set of

documents in the i-th ground truth cluster, and H(· ) denotes the entropy.

Because the algorithms gave different results depending on the initial conditions,

we calculated the mean value of CA and NMI over 100 runs with different initial

conditions. For the CA (Table II), ONMF brought the best performance over the three

algorithms except the cstr dataset. For the NMI (Table III), the overall tendency was

similar to the CA, but NMF showed the best performance for the wap and k1a

datasets. Imposing orthogonality with ONMF usually leads better clustering

performances in our experiments.

The orthogonality of the matrix V is also measured by using the difference between

the V T
V and the identity matrix, that is, . The changes of the orthogonality

C˜

C˜
1

max H C( ), H C˜( )( )
---------------------------------------------  

j

∑
i

∑
Ci C˜ j∩

N
------------------ log2

NCi C˜ j∩

Ci C
˜
j

-----------------------

C˜ i

V
T
V I–

Table I. Document dataset details are summarized, where for each dataset, the number of classes,

the number of documents, the number of terms and the maximum/minimum cluster size are

described.

Datasets # classes # documents
cluster size

max min

CSTR 4 602 214 96

k1a 20 2340 494 9

k1b 6 2340 1389 60

re0 13 1504 608 11

re1 25 1657 371 10

wap 20 1560 341 5

Table II. Mean and standard deviations of clustering accuracies (CA) averaged over 100 trials for

standard NMF, Ding et al.'s orthogonal NMF (DTPP), and proposed orthogonal NMF (ONMF) for

six document datasets. For each case, the highest performance is marked with the boldface letters.

The results significantly worse than the best performance are marked with *, where Wilcoxon

rank-sum test with p-value 0.01 was used.

NMF DTPP ONMF

CSTR 0.7568 ± 0.0796 0.7844 ± 0.0911 0.7268 ± 0.1017

wap 0.4744 ± 0.0289* 0.4281 ± 0.0796* 0.4917 ± 0.0796

k1a 0.4773 ± 0.0289* 0.4311 ± 0.0169* 0.4907 ± 0.0402

k1b 0.7896 ± 0.0744 0.6087 ± 0.0357* 0.8109 ± 0.0636

re0 0.3624 ± 0.0123* 0.3384 ± 0.0364* 0.3691 ± 0.0175

re1 0.4822 ± 0.0421* 0.4452 ± 0.0224* 0.5090 ± 0.0458
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over the iterations are measured and averaged for 100 trials. ONMF obtained better

orthogonality values than DTPP for the most of the datasets. The change of

orthogonality for the CSTR dataset is shown in Figure 2 for an example.

6. CONCLUSIONS

We have addressed orthogonal NMF which is better suited to the task of clustering,

compared to NMF. We have developed a multiplicative update algorithm for

orthogonal NMF, exploiting gradient on a Stiefel manifold. Numerical experiments on

several document datasets confirmed the performance gain over the standard NMF as

well as an existing orthogonal NMF algorithm. The method can be extended to a

nonnegative 3-factor decomposition, which has recently applied to the problem of co-

clustering [Yoo and Choi 2010].

Table III. Mean and standard deviations of normalized mutual information (NMI) averaged over

100 trials for standard NMF, Ding et al.'s orthogonal NMF (DTPP), and proposed orthogonal NMF

(ONMF) for six document datasets. The best performance is marked with the boldface letters. The

results significantly worse than the best performance are marked with *, where Wilcoxon rank-

sum test with p-value 0.01 was used.

NMF DTPP ONMF

CSTR 0.6111 ± 0.1160* 0.6714 ± 0.0676 0.5316* ± 0.1484

wap 0.5658 ± 0.0138 0.5129 ± 0.0111* 0.5647 ± 0.0148

k1a 0.5716 ± 0.0117 0.5155 ± 0.0142* 0.5660 ± 0.0188

k1b 0.6260 ± 0.0535* 0.4817 ± 0.0197* 0.6758 ± 0.0579

re0 0.3169 ± 0.0126* 0.3106 ± 0.0183* 0.3252 ± 0.0157

re1 0.5172 ± 0.0195* 0.5117 ± 0.0140* 0.5319 ± 0.0256

Figure 2. The convergence of orthogonality  of Ding et al.'s orthogonal NMF (DTPP) and

our orthogonal NMF (ONMF) for the CSTR dataset.

V
T
V I–
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