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In this study, we propose a method for encoding documents into string vectors, instead of
numerical vectors. A traditional approach to text categorization usually requires encoding
documents into numerical vectors. The usual method of encoding documents therefore causes
two main problems: huge dimensionality and sparse distribution. In this study, we modify or
create machine learning-based approaches to text categorization, where string vectors are
received as input vectors, instead of numerical vectors. As a result, we can improve text
categorization performance by avoiding these two problems.
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1. INTRODUCTION

Text categorization refers to the process of assigning one or more predefined categories

to each unseen document. It requires two preliminary manual tasks: predefinition of

categories and preparation of sample-labeled documents. As a learning process, the

classification capacity is built automatically using the manually prepared labeled

documents. Using the built classification capacity, unseen documents are classified

automatically. Therefore, text categorization is carried out with three steps:

predefinition of categories and preparation of sample-labeled documents, learning

process, and classification of unseen documents.

Documents should be encoded into numerical vectors as the requirement for a

traditional approach to text categorization. Words are extracted from a corpus as

feature candidates. Among them, some are selected as features by a criterion or a

combination of criteria. Various criteria were proposed. TF-IDF, frequency, information
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gain, and chi-square are typical measures. Note the citation of two problems, that is,

huge dimensionality and sparse distribution, which are inevitable in encoding

documents into numerical vectors.

The first problem, which is inherent in encoding documents into numerical vectors,

is the huge dimensionality. This problem refers to the phenomena, where many

features are required for representing documents into numerical vectors more

robustly. The number of feature candidates extracted from a corpus usually reaches

several ten thousands. Even if selecting only some of them using advanced features

selection criteria, the number of the selected ones reach several hundreds. The

number of features is much smaller than that of feature candidates, but it is still large

with respect to the size of input data.

The second problem inherent in encoding is sparse distribution. It refers to the

phenomena where zero values dominate each numerical vector. In other words, zero

values take more than 90% of each numerical vector representing a document. The

reason is that each word used as a feature has very small coverage in the given

corpus. The computation of the inner product of two sparse numerical vectors becomes

very fragile to this problem.

The idea of this research is to represent documents into string vectors as an

alternative form. A string vector refers to an ordered finite set of words in this study.

In each string vector, a word is given as an element or a value, whereas it is given

as an attribute or a feature in each numerical vector. The features of string vectors

may be defined as posting, statistical, and grammatical properties of words. However,

in this study, for simplicity and ease of implementation, we define the feature of each

string vector as the first-ranked frequent word, the second-ranked one, and so on;

each string vector consists of words in a descending order of their frequencies in the

given document.

We propose an operation necessary for the learning and classification of string

vectors-based machine-learning algorithms. The proposed operation is called average

semantic similarity. It corresponds to the inner product, which is the operation on

numerical vectors and is used for computing a similarity between them. In other

words, the operation of average semantic similarity measures the similarity of two-

string vectors. It is described in detail in Section 3.4.

The second idea proposed in this study is to modify the existing machine-learning

algorithms for their string vector-based versions. The operation on string vectors, which

corresponds to the inner product in the context of numerical vectors, is defined for this

purpose. In this paper, the operation is called average semantic similarity between two

string vectors. A similarity matrix is built automatically from the given corpus, and it

is used as the basis for carrying out the operation. We modify the K Nearest Neighbors

(KNN) and the Support Vector Machine (SVM) into their string vector-based versions

as the approaches to text categorization, and describe them in Sections 4.1 and 4.2,

respectively.

The final idea of this paper is to create a new machine-learning algorithm as well

as to modify existing ones. In this research, the new machine-learning algorithm is

called Neural Text Categorizer (NTC), which receives string vectors as its input

vector. With respect to its architecture, it consists of three layers: input layer, learning
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layer, and output layer. It follows the Perceptron with respect to the learning process

in that the weights are updated only in each misclassification and the Categorical

Score Values (CSVs) are computed by the linear combinations of weights and input

values.

However, the NTC is essentially different from the Perceptron in that its input

vector is given as a string vector, and it will be described in detail in Section 4.3.

This article is organized into six sections including this section. In Section 2, we will

explore previous works relevant to this research. In Section 3, we will describe string

vectors and the involved operation on them with respect to its definitions and

properties. In Section 4, we present the string vector-based approaches to text

categorization. In Section 5, we will validate empirically the performance of string

vector-based approaches to text categorization by comparing them with numerical

vector-based ones. In Section 6, we will mention the significance of our results as a

conclusion.

2. PREVIOUS WORKS

This section reviews previous works relevant to this research. In Section 2.1, we

explore the existing cases of using machine-learning algorithms for text categorization

tasks. Even if there are various approaches to text categorization, we focus only on

four representative ones: Naive Bayes (NB), KNN, SVM, and Multilayer Perceptron

(MLP) with Back Propagation (BP). In Section 2.2, we explore previous solutions to

two main problems in encoding documents into numerical vectors.

2.1 Previous Approaches to Text Categorization

This subsection reviews previous approaches to text categorization. Rule-based

approaches may be regarded as traditional and popular. However, machine learning-

based approaches have already replaced the rule-based ones because of their greater

flexibility and scalability. We review no rule-based approach, but only four

representative machine learning-based approaches: NB, KNN, SVM, and MLP with

BP. Therefore, we present each of the four machine-learning algorithms in terms of

its initial proposal, initial application, and its successive applications to text

categorization.

One of the typical approaches to text categorization is KNN. It was initially

proposed by [Cover and Hart 1967] and was applied to text categorization by [Masand

et al. 1992]. It was recommended by Yang as one of the best approaches in her

evaluation of more than ten approaches to text categorization [Yang 1999]. Sebastiani

regarded KNN as an approach comparable to SVM, which showed its best

performance for text categorization on the standard test bed, Reuter 21578 in 2002

[Sebastiani 2002].

Another typical approach to text categorization is NB. It is based on Bayes rule, and

it was first proposed by Kononenko [Kononenko 1989]. In 1997, Mitchell mentioned

NB as a typical approach to text categorization in his textbook [Mitchell 1997]. In

1999, Mladenic and Grobelink attempted to find an optimal feature-selection method

under the environment, where NB was used for text categorization [Mladenic and

Grobelink 1999]. Some of the applications of NB to text categorization were mentioned
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again by [Eyheramendy et al. 2003].

SVM became a popular approach to text categorization in the late 1990s. Hearst

first introduced SVM in her magazine article in 1998 [Hearst 1998]. In the same year,

Joachims [Joachims 1998] applied it to text categorization. In 1999, Drucker proposed

SVM as an approach to spam-mail filtering, which is a practical instance of text

categorization [Drucker et al. 1999]. Similar to the case of NB, in 2000, SVM was also

presented as a typical approach to text categorization by Cristianini and Shawe-

Taylor in their textbook [Cristianini and Shawe-Taylor 2000].

Among neural networks, the most popular model is MLP with a back-propagation

algorithm, subsequently applied to text categorization. The MLP with back propagation

was initially created by McClelland and Rumelhart in 1986 [McClelland and Rumelhart

1986]. Winer initially applied it to text categorization in 1995 [Wiener 1995]. He

validated empirically that the MLP with back propagation worked better than KNN

on the standard test bed, Reuter 21578 [Wiener 1995]. Later, Ruiz and Srinivasan

proposed the hierarchical combination of MLPs in 2002 [Ruiz and Srinivasan 2002].

2.2 Previous Solutions to Huge Dimensionality and Sparse Distribution

It is required to encode documents into numerical vectors if one chooses to use any

of the previous approaches to text categorization, including those mentioned in

Section 2.1. Such encoding leads to two main problems: huge dimensionality of each

numerical vector and sparse distribution within it. Huge dimensionality means that

each document should be represented into a huge-dimensional numerical vector for

preventing its information loss, though this takes much time for processing and many

training examples are required for the robust classification proportional to the

dimension. Sparse distribution refers to the phenomenon where zero values are

dominant in each numerical vector, which degrades the performance of text

categorization because of the loss of discrimination among numerical vectors.

Therefore, previous researches attempted to find solutions to the two problems, and

we review the solutions in this section.

As a first attempt, in 2002, Lodhi et al. proposed string kernel for the use of SVM

for text categorization [Lodhi et al. 2002]. The string kernel refers to a kernel function

of two raw texts, which returns their syntactical similarity. Owing to the string

kernel, documents did not need to be represented into numerical vectors. However, it

took much time to perform the string kernel, and the performance of text

categorization failed to improve.

Because of the cost of encoding documents into string vectors for the solution, it was

proposed that documents should be encoded into tables. In 2007, Jo and Cho claimed

that documents should be encoded for text categorization [Jo and Cho 2007]. They

proposed an approach that classified documents by matching tables representing

unseen documents with those representing a collection of sample-labeled documents.

It was validated that their approach worked better than NB, KNN, and SVM.

However, since all words except stop words were used for representing documents

into tables, it took more time to classify each document than other earlier approaches.
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3. STRING VECTORS

This section presents string vectors and operations on them. In Section 3.1, we

describe definitions and properties of string vectors. In Section 3.2, we cover how to

encode documents into string vectors. In Section 3.3, similarity matrix is defined as

the basis for the semantic operations on string vectors. Finally, in Section 3.4, we will

define and describe the semantic operation on string vectors, called ‘average semantic

similarity’.

3.1 Definition of String Vectors

A string vector is defined as an ordered finite set of strings. String vectors are

structured data representing raw data and should be distinguished from other structured

data such as numerical vectors and bags of words. In this paper, we propose string

vectors as an alternative representation of documents to numerical vectors. We define

string vectors formally and informally, and compare them with numerical vectors and

bags of words.

A string vector is denoted as an ordered finite set of strings by str=[str1, str2, ....,

strn]. A string, which is an element of the string vector, is a combination of alphabets

of a given language and signifies a word or a vocabulary in natural language. Since

elements are ordered in a string vector, two string vectors with identical elements, but

different orders are treated as different ones. The finite number of elements in the

string vector is called the dimension of the string vector. For example, [computer

information system], [business company industry], and [biology RNA DNA] are instances

of three-dimensional string vectors.

The differences between string vectors and numerical vectors are illustrated in

Table I. As a similarity measure between the structured data, cosine similarity or

Euclidean distance is used in numerical vectors, whereas the average semantic

similarity is used in string vectors. In numerical vectors, words become features,

which decide elements, while in string vectors, statistical, linguistic, and posting

information of words become features. With respect to the relation between string

vectors and numerical vectors, if strings as elements only replace numbers, a

numerical vector is equivalent to a string vector.

The differences between string vectors and bags of words are illustrated in Table II.

Both types of structured data have strings as their elements. As a similarity measure,

cardinality of intersection of two bags of words is used, while the average semantic

similarity is used in string vectors. A bag of words is defined as an unordered variable

set of words, while a string vector is defined as an ordered finite set of words.

Table I. Comparison of Numerical Vectors and String Vectors.

Numerical Vector String Vector

Element Numerical Value String

Similarity Measure Inner Products 

Euclidean Distance

Semantic Similarity

Attributes Words Property of Words
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Although a bag of words and a string vector look similar to each other, they should

be distinguished, based on Table II.

There are three advantages in representing documents into string vectors. The first

advantage is to avoid the aforementioned two main problems completely: the huge

dimensionality and the sparse distribution. The second advantage is that string

vectors are characterized as more transparent representations of documents than

numerical vectors; it is easier to guess the content of documents only from their

representations. The third advantage is that there is the potential possibility of

tracing more easily, as to why documents are classified so. However, in order to use

string vectors more freely, it is necessary to set foundations that are more

mathematical.

3.2 Encoding Documents into String Vectors

This subsection shows the process of encoding documents into string vectors. The

definition of the features of each string vector is based on the frequencies of words in

its source document. The document is indexed into a list of words. The words are

sorted in a descending order of their frequencies, and the highest frequent word is

taken as the first element of the string vector. Therefore, in this section, we will

describe the process of encoding documents into string vectors based on frequencies.

Actually, we can define features in encoding documents into string vectors in

various ways. In spite of that, the reason for adopting only frequencies as the features

is due to a relatively easy implementation of the proposed system. Let us assume that

the dimension of the string vector representing a document is d. The first element and

the last element of the string are the first-ranked frequent word and the dth-ranked

frequent word, respectively; in each string vector, words are arranged in a descending

order of their frequencies. If the features of string vectors are defined as others such

as a noun in the given title, a noun in the first sentence, a verb in the first sentence,

and so on, the implementation of the module of encoding documents into string

vectors becomes complicated.

A document or documents may be indexed into a list of words through the three

steps: tokenization, stemming, and stop word removal. Tokenization refers to the

process of segmenting a long text into tokens by the white space or the punctuation

marks. Stemming means the mapping of each token into its root form; for example,

it maps plural nouns and verbs in their passive forms into singular nouns and verbs

in their root forms, respectively. Stop words are the words, which function only

grammatically, irrelevant to the content; they need to be removed in the third step.

As output of the indexing, a list of words and their frequencies is generated.

Table II. Comparison of Bag of Words and String Vectors.

Bag of Words String Vector

Element Word String

Similarity Measure Number of Shared Words Semantic Similarity

Set Unordered Infinite Set Ordered Finite Set
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We may derive the string vector from the list. The words in the list are sorted in

a descending order of their frequencies. We select the d highest frequent words as the

elements of the string vector. Hence, a string vector is made by selecting the highest

words from the list.

We defined the features of string vectors very clearly for simple implementation, in

spite of the availability of various types of features. The first type of feature belongs

to the statistical class, which includes the highest frequent word in the entire text, the

most highly weighted words, and the highest frequent word in a particular paragraph.

The second type of feature belongs to the posting class where feature values are given

depending on the positions of the given full text. The third type of feature belongs to

the grammatical class to which a subjective noun, a verb, and an objective noun in a

particular sentence belong. Features of string vectors may be defined in the

combination of several types.

3.3 Similarity Matrix

This subsection presents similarity matrix, which is given as the basis for carrying out

the operation on string vectors. The similarity matrix is built from a particular

corpus. The similarity matrix refers to a word-by-word square matrix where each

entry indicates a semantic similarity between two words corresponding to rows and

columns. The similarity matrix has two properties: its diagonal elements are 1.0 and

it is a symmetry matrix. 

The similarity matrix is written as follows:

In the above matrix, N indicates the total number of words, and the similarity

matrix is a N ×N matrix. In similarity matrix, its columns and rows correspond to

words; the ith column and the ith row correspond to the identical word. The entry of

the similarity matrix, sij indicates the semantic similarity between the word which

corresponds to ith column or ith row and the word which corresponds to jth column

or jth row, and it is computed by equation (1),

(1)

where in the corpus, df(wi, wj) indicates the number of documents including both

words, wi and wj; df(wi) indicates the number of documents including the word, wi;

and df(wj) indicates the number of documents including the word, wj. Therefore, in

the given corpus, the more the documents include both words, the higher the semantic

similarity between the words becomes.

The first property of the similarity matrix is that it is symmetric. The following

expression is applicable to every entry of the similarity matrix.

sij=sji, 1 ≤ i, j ≤N

s11 s12 … s1N
s21 s22 … s2N
                        

sN1 sN2 … sNN⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

… … …

…

sim stri, strj( )=sij=
2 df wi, wj( )×
df wi( ) df wj( )+

-------------------------------------
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The following shows that the similarity matrix is a symmetry matrix.

From the expression above, since both df(wi, wj) and df(wj, wi) signify the number of

documents including both words, wi and wj, the commutative law is applicable as

follows:

df(wi, wj)=df(wj, wi)

Therefore, the applicability of the commutative law to the computation of the

semantic similarity between two words characterizes the similarity matrix.

The second property of the similarity matrix is that its diagonal elements are given

as 1.0s. In other words, the value of sii is 1.0. The second property of the similarity

matrix can be shown as follows:

In the expression above, df(wi, wi) is identical to df(wi) since both df(wi, wi) and df(wi)

signify identically the number of documents including wi. This property shows that

although two identical words may have different meanings depending on their

context, they are treated in this paper as the same, both syntactically and

semantically.

We need to consider the construction of the similarity matrix from a corpus. The

corpus is indexed into a list of words. For each word, a list of documents including the

word is built. Using the equation (1), semantic similarities of all possible pairs are

computed as elements of the similarity matrix. Once the similarity matrix is built, it

can be used continually for the text categorization as long as the given domain is not

changed, but note that it costs very much for building the similarity matrix with

respect to time and system resources.

3.4 Average Semantic Similarity between Two String Vectors

This subsection defines the operation on string vectors involved in the proposed

version of KNN. The operation described in this subsection is called average semantic

similarity between two string vectors. There are four properties in the operation and

they will be mentioned in the subsequent paragraph. The operation is used as the

similarity measure between a training example and an unseen example in the

proposed version of KNN. We describe the operation in terms of its definition,

computation, and properties.

Before computing the average semantic similarity between two string vectors, let us

discuss the concept of semantic similarity between two strings or words. It is assumed

that the content of a document tends to aim at its consistency. Words, which are

collocated in same documents, tend to have similar or relevant meanings. The more

documents that include two words in a given corpus there are, the greater the

similarity between the two words becomes. A semantic similarity between two words

may be different depending on the given corpus.

sij=
2 df wi, wj( )×
df wi( ) df wj( )+

-------------------------------------=
2 df wj, wi( )×
df wi( ) df wj( )+

-------------------------------------=sji

sii=
2 df wi, wi( )×
df wi( ) df wi( )+

-------------------------------------=
2 df wi( )×
2 df wi( )×
------------------------=1.0
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Two string vectors are denoted as follows:

str1=[str11, str12, ..., str1d], str2=[str21, str22, ..., str2d]

The similarities of 1:1 pairs of two string vectors denoted by sim(str11, str21), sim(str12,

str22), ..., sim(str1d, str2d) are computed by getting elements crossing in the rows and

columns corresponding to the given strings or words. If there is no such word which

corresponds to its row or column, the similarity of the word becomes zero. The average

semantic similarity between the two string vectors is computed, using equation (2).

sim(str1, str2)= sim(str1i, str2i)

where sim(str1i, str2i) indicates the similarity between two strings, str1i and str2i and

obtained from the similarity matrix. Since semantic similarities of one-to-one pairs

are given as normalized values, the average value is computed as a normalized value.

The properties of the average semantic similarity between two string vectors are as

follows:

− Average semantic similarity between two identical string vectors is 1.0, since all one

to one pairs of elements are 1.0.

− The commutative law is applicable to this operation as expressed

sim(str1, str2)=sim(str2, str1)

because the semantic similarity is given as a symmetry matrix. 

− This operation involves only two string vectors, since the similarity matrix is given

as a two-dimensional array.

− The operation generates a normalized value, since only normalized values are

averaged.

The operation on string vectors, called average semantic similarity, corresponds to

the inner product, which is a typical operation on numerical vectors. When two

vectors are identical in terms of their elements and order, whether they are numerical

vectors or string vectors, the similarity between them becomes largest. The difference

from the inner product is that the value resulted from the inner product is given as

a real value, while the value resulted from the average semantic similarity is given

as a normalized value between zero and one. The inner product between numerical

vectors is very fragile due to their sparse distributions; it generates a zero value

easily. Therefore, in the proposed version of KNN, documents are represented into

string vectors and the inner product is replaced by the average semantic similarity as

the similarity measure between training and an unseen example.

4. String Vector-based Approaches

This section is concerned with the string vector-based approaches to text categorization,

and it is composed of three subsections. In Section 4.1, we describe in detail the string

vector-based version of KNN. In Section 4.2, we define the string vector kernel of the

SVM. In Section 4.3, we clarify the NTC which is specialized for any task of text

categorization.

1

2
---  

i 1=

d

∑
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4.1 The Proposed Version of KNN

This subsection is concerned with the proposed version of KNN, as the approach to

text categorization. Sample-labeled documents are encoded into string vectors, but

they are not learned in advance. When an unseen document or documents are given

its or their nearest neighbors among sample-labeled string vectors are selected. KNN

decides its or their categories by voting the target categories of the selected nearest

neighbors. We describe the proposed version of KNN where documents are encoded

into string vectors and the average semantic similarity is used as the similarity

measure.

Before discussing the proposed version of KNN, let us consider its learning process.

Since KNN does not learn sample-labeled examples until any unseen example is

given, it is called lazy learning algorithm [Mitchell 1997]. When any unseen example

is available, it starts the learning. It computes the similarities of the given unseen

example with the sample-labeled examples, and selects several nearest ones as

neighbors of the unseen example. Therefore, KNN does both learning and

classification after any unseen example is given.

The classification of KNN refers to deciding a category or categories of the given

unseen example based on the selected neighbors. The K is given as a parameter and

indicates the number of neighbors, which are selected for the classification. The K is

usually set as an odd number such as one and three. The majority of categories of the

selected neighbors decides a category of an unseen example. However, in the initial

version, the discrimination among selected neighbors is overlooked.

We need to consider the discrimination among the neighbors based on their

distance from the given unseen example. Different weights should be assigned to

neighbors depending on the similarity of the unseen example; most nearest neighbor

should be assigned a highest value, while least nearest one should be assigned a

lowest one. To each category, the sum of weights is computed. We can decide the

category of the unseen document corresponding to the maximum sum of weights.

Therefore, various schemes for assigning weights to neighbors may be considered.

Table III illustrates the comparison between traditional and proposed version of

KNN. In the traditional version, numerical vectors are given as input data, while in

the proposed version, string vectors are given so. As for the similarity between a

sample-labeled example and an unseen one, the cosine similarity or Euclidean

distance is used in the traditional version, while the average semantic similarity is

used in the proposed version. In the traditional version, two main problems, which are

inherent in encoding documents into numerical vectors, still exist. Therefore, the

proposed version is aimed to improve the performance of text categorization due to the

absence of the two main problems.

4.2 String Vector-based SVM

The SVM is characterized as a mapping from a particular feature space into another

space. Since the inner product of two vectors generates a scalar value in any space,

the kernel function is used for generating the result from the inner product in the

mapped space without mapping the vectors implicitly. In this section, we will describe
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a version of SVM, which is modified by replacing a kernel function of numerical

vectors by one of the string vectors. 

The output value of a kernel function of two vectors indicates the value, which

results from the inner product of the vectors in the mapped space, and there are

typically three types of kernel functions. The first type is a linear kernel function,

which is an inner product with its own bias. One in the second type is a polynomial

kernel function, which makes a polynomial equation of two vectors. The third type is

called a Gaussian kernel function, which is based on the Gaussian distribution based

on the difference between two vectors. The value, which results from a kernel function

in any type, indicates the similarity between the two vectors in the mapped space.

The general form of the equation of two hyperplanes defined by SVM is defined as

equation (3).

f(x)= (3)

where N is the number of training examples, xi, i=1, ..., N is a training example, and

k(· ) is a kernel function. In equation (3), αi called Lagrange multiplier corresponds to

each training example, and learning of SVM means the optimization of the Lagrange

multipliers. Almost, all Lagrange multipliers have zero values and only a few have

nonzero values; training examples corresponding to nonzero Lagrange multipliers are

called support vectors. There are various optimization algorithms; the Sequential

Minimization Optimization (SMO) is the-most popular among them.

SVM was originally designed to a binary classification task. If the value of the

function, f(x) is more than one, it belongs to the positive class, but otherwise, it

belongs to the negative class. Different from any other linear classifier, SVM defines

the two equations as the result from its learning: f(x)= αik(xi, x)=−1. The area

within −1 ≤ αik(xi, x) ≤ +1 is called the marginal area, and the SVM pursues the

maximization of the marginal area for better classification of unseen examples. In

order to treat real problems, SVM defines the equations with the error tolerance as

 

i 1=

d

∑ αik xi, x( ) ±1≥

Σi 1=

N

Σi 1=

N

Table III. Comparison of Numerical Vectors and String Vectors.

Traditional Version Proposed Version

Input Data Numerical Vectors String Vectors

Similarity Measure Cosine Similarity Euclidean Distance Semantic Similarity

Dimensionality Usually Several Hundreds Dimensions Several Tens Dimensions

Sparse Distribution Frequent  Never

Table IV. Comparison of Two Versions of SVM

Traditional Version  Modified Version

Input Data  Numerical Vectors  String Vectors

Kernel Function  Inner Products  Semantic Similarity

Sparse Distribution  Available  Not Available
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αik(xi, x) ≤ −1+ζ and αik(xi, x) ≥ 1−ζ.

The differences of the two versions of SVM are illustrated in Table IV. In the

traditional version, an input data is given as a numerical vector whereas in the

modified version, an input data is given as a string vector. In the traditional version,

three types of kernel functions are available, while currently only the average

semantic similarity itself is given as the kernel function in the proposed version. The

traditional version of SVM is tolerance to the huge dimensionality of numerical

vectors, but fragility to the sparse distribution of each numerical vector. The modified

version becomes tolerant to both problems by encoding documents into string vectors

in which the two problems can never be inherent.

4.3 Neural Text Categorizer

This section is concerned with architecture, learning algorithm, and classification of

the proposed neural network called NTC. Documents are encoded into string vectors

for using NTC. In the neural network, the special layer, called the learning layer,

exists. With respect to the architecture of NTC, the input nodes are directly connected

to the output nodes, and the weights between the input and output nodes are decided

by the learning nodes.

The architecture of NTC is illustrated in Figure 1. The input layer receives an input

vector given as a string vector and the number of nodes in the layer is consistent with

the dimension of the string vector. The output layer generates categorical scores,

which indicates the likelihood of the given input vector to each category, and the

number of nodes in the layer is consistent with the number of the predefined

categories or classes. The learning layer decides the weights between the input and

output layers differently depending on the given input vector, and the number of

nodes in the layer is also consistent with the number of categories or classes.

Therefore, with respect to its architecture, NTC has the three layers as shown in

Figure 1.

In context of the learning process, the first step of NTC is to initialize the weights

between the input and output layers. Let us assume that NTC is applied to text

categorization without decomposing the task into binary classification tasks. A set of

the training string vectors is partitioned category-by-category. Each learning node has

its own table, which consists of words and their weights. Frequencies of elements of

string vectors within each category are assigned in the table as the initial weights.

Σi 1=

N Σi 1=

N

Figure 1. Overall Architecture of the NTC.
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Therefore, the initial step is to set up the tables in learning nodes.

The learning process of the NTC refers to the process of optimizing the weights in

the tables of the learning nodes. Each training example is classified by summing the

initial weights and selecting the category corresponding to the maximal sum. If the

training example is classified correctly, the weights are not updated. Otherwise, the

weights are incremented toward the target category and are decremented toward the

classified category. The optimized weights are generated as an output of this process.

In NTC, each example is classified by summing the optimized weights, whether it

is a training or unseen example. Each output node generates the summation of

weights connected to itself from the input nodes as its categorical score. The weights

are decided by referring the table, which is owned by its corresponding learning node.

The category corresponding to the output node, which generates its maximum

categorical score, is decided as the category of the given example. Therefore, the

output of this process is one of the predefined categories, assuming that NTC is

applied to text categorization without the decomposition.

The property which characterizes NTC exists. It is that the learning layer exists

inherently in NTC, and it has its own table as the reference for deciding weights,

which consists of words and their weights. Each input node receives a string as an

element of a string vector, and learning nodes decide the weights connected from the

input node by referring to their own tables. In the current version of NTC, if the word

is not registered in a table, its weight is assigned as zero. The issue in this case will

be considered in further research.

5. COMPARISON OF STRING VECTORS AND NUMERICAL VECTORS

We will compare the above representations of documents in three sets of experiments.

In Section 5.1, we compare two versions, the string vector-based version and the

numerical vector-based version of KNN with each other. In Section 5.2, we compare

the two kernel functions, the inner product of two numerical vectors, and the average

semantic similarity of two string vectors in using SVMs for a task of text

categorization. In Section 5.3, we compare neural network, called NTC, with other

traditional machine-learning algorithms. The goal of these sets of experiments is to

compare the performance of string vector-based approaches and numerical vector-

based approaches to text categorization.

5.1 Numerical Vector-based Version vs. String Vector-based Version of KNN

This subsection is concerned with a set of experiments for comparing the two versions

of the KNN. Reuter21578, which is known as the standard test bed for evaluating

approaches to text categorization, is used in this set of experiments. Documents are

encoded into string vectors and numerical vectors for two versions. It may be

interpreted that within the KNN, two types of representations of documents are

compared with each other. The goal of this set of experiments is to observe the

performance of the two versions of the KNN [Sebastiani 2002].

In this set of experiments, the collection of news articles named °×Reuter21578°± is

used as the test bed. The partition of the collection into the training set and the test

set is illustrated in Table V. Actually; there are more than 100 categories in the test
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bed. However, only ten most frequent categories are involved in this set of

experiments. Other literature also use only ten categories as well for this research.

The number of nearest neighbors given as the parameter of the KNN is fixed to

three. In the traditional version, documents are encoded into 100-, 250-, and 500-

dimensional numerical vectors1. In the proposed version, they are encoded into 10-,

25-, 50-dimensional string vectors. In order to present the robustness of the proposed

version with the smaller sized input data, the input size of the proposed version is

one-tenth of the traditional version.

In this set of experiments, words with their highest total frequencies are selected

as features. The given text classification is decomposed into binary classification tasks

in as many categories as possible; each binary classification corresponds to each

category. In each binary classification task, training documents belonging to the

corresponding category are labeled with the positive class, and some of the others,

which do not belong to the corresponding category, are selected at random and are

labeled with the negative class. The collection of the training documents, which are

relabeled so, are indexed into a collection of words called feature candidates, among

which words with their highest frequencies are selected as features. In this set of

experiments, only frequency-based feature selection is used, and we will consider

other advanced schemes for selecting features in our next research.

The results from this set of experiments are presented in Figure 2. In the left side

of the figure, microaveraged F1 measures are given. In the right side, macroaveraged

F1 measures are provided. With respect to F1 measure, both versions are similar to

each other, but with respect to macroaveraged F1 measure, the proposed version is

slightly better. Therefore, through this set of experiments, we can conclude that the

Table V. Training and Test Sets in the Test Bed: Reuter21578

Category Name  Training Set  Test Set  Total

Acq  1452  672  2124

Corn  152  57  209

Crude  328  203  531

Earn  2536  954  3490

Grain  361  162  523

Interest  296  135  431

Money-Fx  553  246  799

Ship  176  87  263

Ship  335  160  495

Wheat  173  76  249

Total  6362  2752  9114

1In previous literatures, documents were usually encoded into approximately 300-dimen-
sional numerical vectors, so the dimensions presented in this set of experiments are based
on facts [Sebastiani 2002].
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proposed version is robust with only smaller-sized input data, and more tolerant to

small-sized categories.

5.2 Numerical vector vs. String Vector in SVM

This section is concerned with a set of experiments for comparing two kernel functions

of SVM in context of the text categorization. The standard collection of news articles,

called Reuter21568, is used as the test bed. Like the previous set of experiments, the

documents are encoded into high-dimensional numerical vectors and low-dimensional

ones. In the traditional version of SVM, the inner product is used as its kernel

function, whereas the average semantic similarity is used as the kernel function in

the proposed version. The goal of this set of experiments is to observe the text

categorization performances of the two kernel functions of the SVM.

The results of this set of experiments are illustrated in Figure 3. Like Figure 1, the

left side shows the results with respect to microaveraged F1 measure, whereas the

right side shows those with respect to macroaveraged F1 measure. As shown in

Figure 3, the proposed version is better than the traditional version with respect to

both F1 measures. Accordingly, because of the better results evaluated by the

microaveraged F1 measure, the proposed version is more robust than the traditional

version. Based on the better results with respect to the macroaveraged F1 measure,

the proposed version is more tolerant to the sparse category where only a few

documents are available.

5.3 NTC vs. Traditional Machine-Learning Algorithms

This subsection is concerned with a set of experiments for validating empirically the

performance of the string vector-based neural network. In the previous sections, two

Figure 2. The Results from Comparing the Two Versions of KNN.

Figure 3. The Results from Comparing the Two Kernel Functions of SVM.
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kinds of representations of documents are compared with each other within using a

particular machine-learning algorithm. In this set of experiments, the neural network,

called NTC, is compared with the several traditional and popular approaches to text

categorization. Documents are also encoded into the two kinds of representations for

this set of experiments. 

Table VI illustrates the predefined categories and the number of news articles per

category in the test bed, Reuter 21578. The ten most frequent categories are selected

among more than 100 categories in this set of experiments. As illustrated in Table VI,

the collection of news articles is partitioned into two sets: the training and the test

set. The selection of ten most frequent categories and the partition are subject to the

literature [Sebastiani 2002]. The Reuter 21578 is popularly used as a standard test

bed for evaluating approaches to text categorization [Sebastiani 2002].

The configurations of the approaches are illustrated in Table VII. The parameters

of SVM and KNN, the capacity and the number of nearest neighbors are set as four

and three, respectively, but the NB has no parameter. The parameters of the NNBP

such as the number of hidden nodes and the learning rate are arbitrarily set as shown

Table VI. The Most Frequent Categories in Reuter21378.

Category Name #Training #Test #Total

Earn  2536  954  3490

Acq  1452  672  2114

Money-Fx  553  246  799

Crude  328  203  531

Grain  361  162  523

Trade  335  160  495

Interest  296  135  431

Ship  176  87  263

Wheat  173  76  249

Corn  152  57  209

Table VII. The Configurations of Participating Approaches.

Approaches to Text Categorization  Parameter Settings

SVM  Capacity = 4.0

KNN #nearest number = 3

Naive Bayes  N/A

NNBP with Back Propagation  Hidden Layer: 10 hidden nodes

Learning rate: 0.3 

#Training Epochs: 1000

NTC Learning rate: 0.3 

#Training Epochs: 100
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in Table VII. News articles are encoded into 500-dimensional numerical vectors and

50-dimensional string vectors. Therefore, the configurations of the involved

approaches are set as shown in Table VII.

The results of comparing the involved approach with each other are presented in

Figure 4. Among the five bars, the black bar indicates the performance of the

proposed approach. The left group indicates microaveraged F1 measure of five

approaches. The right group does macroaveraged F1 measure. The proposed

approach, NTC, shows its best performance among the five approaches.

Let us discuss the comparison of the NTC with the traditional approaches in this

set of experiments. The four typical machine-learning algorithms, NB, traditional

version of SVM, traditional version of KNN, and MLP with back propagation. As

shown in the figure, NTC outperforms the four approaches. However, NTC is very

slightly better than MLP with back propagation. Nevertheless, NTC is a more

recommendable approach to text categorization with respect to both performance and

learning speed, compared with MLP.

6. CONCLUSIONS

In this paper, we proposed new representations of documents in favor of the text

categorization. It was discovered that the string vector-based version is better in using

KNN. In addition, the string vector-based kernel function is better than the numerical

vector-based one in using SVM. NTC worked significantly better than NB, a

traditional version of KNN, and a traditional version of SVM, but slightly better than

MLP. Finally, we conclude that it is more recommendable to encode documents into

string vectors than into numerical vectors.
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