
Journal of Computing Science and Engineering, Vol. 4, No. 2, June 2010, Pages 128-152.

Static Worst-Case Energy and Lifetime Estimation 

of Wireless Sensor Networks

Yu Liu and Wei Zhang

Department of Electrical and Computer Engineering,

Southern Illinois University Carbondale,

Carbondale, Illinois, USA

{liu,zhang}@engr.siu.edu

Kemal Akkaya

Department of Computer Science, Southern Illinois University Carbondale, 

Carbondale, Illinois, USA

kemal@cs.siu.edu

Received 25 February 2010; Revised 24 May 2010; Accepted 8 June 2010

With the advance of computer and communication technologies, wireless sensor networks
(WSNs) are increasingly used in many aspects of our daily life. However, since the battery
lifetime of WSN nodes is restricted, the WSN lifetime is also limited. Therefore, it is crucial to
determine this limited lifetime in advance for preventing service interruptions in critical
applications. This paper proposes a feasible static analysis approach to estimating the worst-
case lifetime of a WSN. Assuming known routes with a given sensor network topology and S-
MAC as the underlying MAC protocol, we statically estimate the lifetime of each sensor node
with a fixed initial energy budget. These estimations are then compared with the results
obtained through simulation which run with the same energy budget on each node.
Experimental results of our research on TinyOS applications indicate that our approach can
safely and accurately estimate worst-case lifetime of the WSN. To the best of our knowledge,
our work is the first one to estimate the worst-case lifetime of WSNs through a static analysis
method.
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1. INTRODUCTION

Wireless sensor networks (WSNs) are increasingly used in many aspects of our daily

life, such as environmental monitoring, health-care systems, structure health checking,

military applications, etc. Such networks normally consist of a large number of tiny

sensor nodes that self-organize themselves into a multi-hop wireless network in order

to collect ambient information. A sensor node is battery-powered which has a limited

lifetime. When the battery depletes, the node basically will not be able to function

anymore. Therefore, there has been a significant amount of research in the past in

order to extend the lifetime of sensor nodes with intelligent, energy-aware algorithms

at different layers of the protocol stack [Akyildiz et al. 2002]. Despite improvements,

such algorithms cannot guarantee an unlimited running time for sensors and thus the

service of the WSN can be easily interrupted/terminated with the failure of sensors

due to battery exhaustion. Therefore, a mechanism to determine the lifetime of

individual sensors and thus the whole WSN in advance is of paramount importance

for WSN application designers. Such knowledge would be crucial for critical real-time

applications such as forest monitoring, military surveillance, target tracking, etc. In

addition, it will enable better asset planning before the WSN is deployed.

In the past decade, there has been many research on the predication of energy

consumption of sensors [Salhieh et al. 2001; Wang et al. 2006; Barberis et al. 2007;

Agnihotri and Nuggehalli 2007; Jayaseelan et al. 2006]. In addition, plenty of radio

energy models were proposed in order to estimate the lifetime of the WSNs through

simulation [Salhieh et al. 2001; Wang et al. 2006; Barberis et al. 2007; Agnihotri and

Nuggehalli 2007]. However, all these previous works can only guarantee estimation of

the average-case WSN lifetime, which still makes users face the high risk of

unexpected service termination of the whole network if the network design does not

base on the worst-case analysis.

Mounier et al. studied the worst-case lifetime of a WSN by using model checking

[Mounier et al. 2007]. In general, their approach finds an exhaustive way to provide

information about the worst-case. However, their goal is essentially to compare

protocols, not to have an absolute value of the network lifetime. Therefore, their

estimated results can not be used to guide the design of WSNs. Furthermore, this

model-checking approach requests a large amount of computation time. For instance,

the computation lasts more than two days for a WSN with eleven nodes. Therefore,

an effective static analysis method to bound the absolute value of worst-case lifetime

of a WSN is necessary to direct the design of WSNs.

In this paper, we propose an approach to estimating the worst-case lifetime of a

WSN, which considers the worst-case energy consumption of each sensor, including its

CPU, radio, circuit, and EEPROM. The energy models are chosen based on the widely

used MICA2 motes [MPR-MIB 2007]. We estimate the CPU energy consumption by

an Integer Linear Programming (ILP) based method on the events occurring in the

lifetime of a node. Also, the TinyOS operation system [TinyOS 2010] overhead for the

CPU active state energy consumption is considered in our work. We then analyze the

worst-case radio energy consumption scenarios for the S-MAC protocol [Ye et al.

2002], and compute the results according to our analysis. Finally, we add the worst-

case CPU, radio, sensor circuit and EEPROM energy consumption to calculate the
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total energy consumption of a sensor node for a particular S-MAC frame. The lifetime

of a node can then be calculated by finding the total number of S-MAC frames for the

initial energy budget of the node. Once we know the lifetime of each node, we can

determine the lifetime of the network by different strategies, such as the average

lifetime of all nodes based, a certain percentage of alive network nodes based, the

network connectivity based, the sensor coverage based one, etc. More information

about the strategies of determining the WSN lifetime can be found in [Sha et al. 2008;

Dietrich and Dressler 2009]. Our experimental results on TinyOS applications based

on S-MAC indicate that this approach can safely and accurately estimate the worst-

case lifetime of WSNs. Besides, we also study the way of extending our static analysis

method to the energy-efficient routing protocols of WSNs.

2. SYSTEM MODEL AND ASSUMPTIONS

In this section, we first provide basic hardware information regarding the sensors we

use and then summarize our network assumptions. 

In the past years, several hardware platforms for sensors were developed and

commercially used in the field, such as Rockwell WINS & Hidra Nodes [Teledyne

2010], Berkeley Motes  [Berkeley 2010], UCLA iBadge [iBadge 2010], Crossbow MICA

Series Motes (MICAz, MICA2, Mica2Dot) [MPR-MIB 2007], etc. These hardware

platforms have a similar architecture to match general requirements of WSNs,

including a basic controller, a low power communication device, a memory, a sensing

circuit, and a power supply. In this work, we focus on the most commonly used

battery-powered platform, named MICA2 mote from Crossbow Inc [MPR-MIB 2007]. 

WSNs are formed by networking of a large number of sensors (e.g., MICA2 motes).

Figure 1. The topology of a data gathering tree for a sample WSN.

Figure 2. Periodic listen and sleep scheme of S-MAC.
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The data sensed at the sensors are collected at a node called base-station (BS) by

forming a data gathering tree [Lu et al. 2004] rooted at the BS. In such a data

gathering tree, leaf nodes are referred to as source nodes. In addition to these source

nodes, there are relay nodes which are responsible for processing/aggregating the data

and forwarding it towards the BS. Such nodes are referred to as aggregation nodes.

A sample data gathering tree is shown in Figure 1.

In our setup, source nodes generate packets periodically. Aggregation nodes on the

other hand do not sense the environment but rather collect data from their child

nodes and perform some CPU processing (e.g., averaging the readings, calculating

histogram, etc) before relaying the data upwards. Finally, we assume that the peer

communication is reliable once pair nodes reserve the wireless medium. In other

words, no re-transmission is needed once the peer communication is set up. Accordingly,

we disable such re-transmission during simulation. However, our analysis can be

easily adapted to remove this assumption by considering the maximum re-transmission

configuration.

3. S-MAC AND ITS ANALYSIS

3.1 Overview of S-MAC

In this paper, we use the S-MAC protocol as our media access layer. S-MAC is one

of the first energy-efficient MAC protocols used in WSNs. A full software implementation

on TinyOS is freely available [TinyOS 2010]. S-MAC is designed to reduce energy

consumption by introducing four major components: periodic listening, collision

avoidance, overhearing avoidance, and message passing. 

Periodic listen and sleep is the major component of S-MAC, which greatly addresses

the issue of energy waste due to idle listening. Each node goes to sleep for some time,

and then wakes up and listens to see if any other node wants to talk to it. During

sleeping, the node turns off its radio, and sets a timer to awake itself later [Ye et al.

2002]. Periodic listen and sleep of S-MAC is illustrated in Figure 2. Normally, S-MAC

synchronizes all the nodes to ensure that they can listen and sleep at the same time.

Therefore, nodes periodically exchange synchronization packets to maintain their

synchronization. Collision avoidance is achieved by following similar procedures in

IEEE 802.11 specification, (Network Allocation Vector, Carrier Sense and RTS/CTS

mechanism). Forcing interfering nodes sleep after they hear a RTS/CTS packet can

avoid overhearing efficiently. Finally, message passing is introduced to reduce the

control packet overhead. The approach is to fragment the long message into many

small fragments, and transmit them in burst, and only one RTS and one CTS packet

are used [Ye et al. 2002].

The S-MAC protocol utilizes frames and periods [Mchenry and Heidemann 2007] to

organize the sleep and synchronization schedules. A frame is the combination of listen

and sleep intervals. Listen interval is the duty cycles of S-MAC communication, and

divided into two segments namely SYNC and DATA. The SYNC segment is used for

sending/receiving synchronization packets. The DATA segment, on the other hand, is

used for RTS/CTS exchange. Furthermore, each segment is composed of some number

of slots, where each slot represents an opportunity for one node to capture the channel
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for sending a control packet, and several slots are provided to allow randomization to

reduce the likelihood of collision [Mchenry and Heidemann 2007]. A period is the

interval of synchronization packets transmission to neighboring nodes.

S-MAC frames can be categorized into Tx, Rx and idle frames according to the

status of DATA packets communication. The S-MAC frame with DATA packet

transmission is named the Tx frame, while the frame with DATA packet receiving is

the Rx frame. Thus, the S-MAC frame without any DATA packet operation is called

the idle frame. In addition, the DATA packet transmission interval is the number of

S-MAC frames between two adjacent Tx frames.

Our worst-case energy consumption scenarios analysis regards that all nodes in the

designed WSN can work correctly. In other words, all nodes can be synchronized

correctly which is requested by the S-MAC. If nodes cannot be synchronized, they will

not be able to follow listen/sleep scheme, which is the basis for our analysis. In

addition, desynchronization will force radio into greedy neighbor searching to consume

much more energy. Normally, such assumption can be guaranteed in the run-time,

since it is a basic requirement of a good WSN design.

3.2 Analysis of S-MAC

In this section, we will identify the scenarios for S-MAC which will result in the

worst-case energy consumption.

3.2.1 Radio Transmission. In S-MAC, three different types of packets are transmitted

through radio: SYNC packets, control packets (RTS, CTS and ACK), and DATA packets.

We now explain worst-case scenarios for each of these packet types:

− SYNC Packets: Each node periodically broadcasts SYNC packets to its neighbors

even if it has no followers [Ye et al. 2002]. Although SYNC packets may encounter

collision or interference problems at the receiver side, no re-transmission is done for

SYNC packets in S-MAC. Therefore, for a sensor node at most one SYNC packet

will be transmitted in each synchronization period.

−RTS/CTS packets: S-MAC adopts the RTS/CTS exchange mechanism to reserve

medium for collision avoidance. The node which first sends out the RTS packet wins

the medium, and the receiver will reply with a CTS packet [Ye et al. 2002]. It is

important to note that when a sensor node starts transmitting its data and there is

no time left in the DATA segment according to its schedule, this does not mean that

the node immediately stops transmitting and goes to sleep mode. In other words, the

node will not be forced into sleep until its DATA packet transmission is finished.

Therefore, the worst-case energy consumption scenario occurs when a node wins the

medium at the very end of its regular DATA segment, which requires the node to

extend its radio duty cycle maximally.

−DATA/ACK packets: As mentioned earlier, we assume that the stable peer

communication cannot be interfered once the medium is reserved by RTS/CTS

exchange. Therefore, we do not consider the re-transmission of DATA packets. As a

result, the ACK packet can be successfully received after each DATA packet

transmission.
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3.2.2 Radio Receiving. When the radio wakes up, it will firstly enter the idle state.

It enters the receiving state once it detects carrier in the wireless medium. However,

it is impossible for us to identify the exact radio receiving time, since all types of

interfering transmission and even noise can drive radio into the receiving state at

run-time. Therefore, all radio duty time in both the listen and sleep intervals excluding

transmission time is regarded as receiving time. This scenario may seldom occur, but

it is the worst-case one. In addition, RTS packet receiving could occur at the end of

duty cycle which causes a break in the listen/sleep scheme, and thus prolong the duty

cycle to the fullest extent possible.

3.2.3 Topology Constraints. Worst-case energy consumption scenarios will differ

based on the types of nodes in the data gathering tree. For instance, the leaf nodes

only transmit DATA packets. Thus, they will only have Tx and idle frames. While

source nodes are trying to transmit DATA packets to their parent nodes during the

Tx frames, they will not do such an action in idle frames. Aggregation nodes, on the

other hand, have both child nodes and parent nodes. Thus, their frames are categorized

into Tx, Rx, and idle frames. The number of Rx frames and idle frames depend on

both the number of child nodes as well as DATA packet transmission intervals.

Finally, the base station does not have any Tx frames, because it is the center of the

network for gathering data.

4. WORST-CASE ENERGY AND LIFETIME ANALYSIS

4.1 Energy Models

4.1.1 The Energy Model of The Radio. The energy consumed in the radio depends

on the number of message bits received/transmitted and the per bit energy cost

required [Agnihotri and Nuggehalli 2007]. The number of message bits received/

transmitted can be transformed into the radio receiving/transmission duration on the

specific hardware platform. Therefore, we can use Equation 1 to calculate the energy

consumption of radio, where Uradio is the voltage of radio component, Iradio is the

current of radio. Time is the radio receiving/transmission duration, which is computed

through dividing the number of transmitted/received message bits by the baud rate.

Table I. Current notations and values on a MICA2 mote.

State Notation Current (A)

CPU Active Icpu_active 0.0075667

CPU Idle Icpu_idle 0.0033433

Radio Tx (15M) Iradio_tx 0.01134

Radio Rx Iradio_rx 0.0096

Sensor Circuit Isensor 0.0007

EEPROM Standby Ieeprom_standby 0.000002
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Eradio =Uradio × Iradio × Time (1)

4.1.2 The Energy Model of The CPU. Our work focuses on the popular MICA2 mote

that uses AVR Atmega128L CPU. The AVR Atmega128L is an 8-bit CPU with 128k

in-system programmable flash. It is a simple CPU without employing advanced

microprocessor features, such as multi-stages pipeline, cache, out-of-order execution,

etc. Thus, instruction-level energy estimation techniques are quite accurate for simple

processor architectures [Jayaseelan et al. 2006]. The energy consumption of each cycle

is fixed. In addition, we can know the maximum needed cycles of each instruction from

the datasheet of AVR Atmega128L CPU [Atmega128L 2007].

Some AVR instructions request different number of cycles depending on the exact

instruction. In order to bound the worst-case energy consumption through static

analysis, we select the maximum requested cycles of these instructions in the active

state. By adding up these maximum requested cycles, we can calculate the total

worst-case number of cycles needed in the active state. Then, we multiply this number

with the time per cycle to calculate the total time the CPU staying in the active state.

Excluding the active state time, all the remaining time is in the idle state. Therefore,

we can compute the CPU energy consumption based on Equation (2), where Ucpu is

the voltage of CPU, Icpu is the current of CPU, and Time is the duration the CPU

staying in the active or idle state.

Ecpu =Ucpu × Icpu × Time (2)

4.2 Overview of Our Approach 

The majority of the energy-efficient MAC protocols specifically designed for WSNs are

based on a periodic listen/sleep scheme. Therefore, our basic idea of bounding the

worst-case lifetime of WSN nodes is to statically estimate the worst-case energy

consumption in each S-MAC frame, and then compute the number of frames per a

specific battery energy budget based on the worst-case energy consumption in each

frame. Since we know the duration of one S-MAC frame, we can acquire the worst-

case lifetime through the minimal number of frames. 

Our proposed static approach can be summarized into three steps. First, our

approach estimates the maximum number of CPU cycles of each event occurring in

one S-MAC frame through the ILP method based on the control flow graph (CFG). By

adding up all maximum CPU active state time of all events, we can bound the worst-

case CPU time in the active state, and then estimate the worst-case CPU energy

consumption. The detailed method and algorithm about utilizing ILP is described in

Subsection 4.3. Second, our approach predicts the worst-case radio energy consumption

in each frame based on our worst-case energy consumption scenarios analyzed in the

previous sections. The details will be presented in Subsection 4.4. Finally, our

approach computes the minimal lifetime of each node based on the worst-case energy

consumption in each S-MAC frame as detailed in Subsection 4.5. Having the

information of worst-case lifetime of all nodes, the network lifetime can be bounded

by different strategies. 
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We also note that we need to consider the energy consumption from both sensor

circuit and EEPROM. The sensor circuit is requested to be always powered on by the

simulator, and we do not have EEPROM read and write operations in our applications.

Thus, EEPROM is only in the standby state.

4.3 CPU Energy Consumption Estimation 

The CPU has two states including the active and the idle one. S-MAC utilizes an

event-driven WSN operation system called TinyOS and thus our analysis will focus

on this operation system. The CPU will turn into the idle state from the active one

if no TinyOS task requested by events is waiting for executing in the task queue.

Since the energy consumption in the idle state is less than that in the active one, we

need to obtain an upper bound of the CPU active time through static analysis. 

We need to analyze all events occurring in one S-MAC frame to find the maximum

CPU active time through an ILP based method on the CFG information. Also, the

overhead of TinyOS system should be considered. TinyOS system has an infinite loop

running in the whole lifetime of a node to process the tasks requested by the events.

Since only one task can be handled during each iteration, the number of iterations of

this loop can be bounded by the number of requested tasks in the worst-case energy

consumption scenarios. Moreover, the number of these tasks can be calculated from

the weight of basic blocks in the codes of each event, which is the result of solving the

ILP formulas to obtain the WCET.

4.3.1 Basic Categorization of CPU Energy Consumption. We can categorize all

events occurring in one S-MAC frame into several groups, and find the theoretical

worst-case energy consumption for each. By adding up these data, we can get the

worst-case energy consumption of one frame. Events occurring within one S-MAC

frame is illustrated in Figure 3.

(1) At the beginning of system execution on the node, it has an initialization event

prior to the start of S-MAC frames. Its WCET is denoted as Tinit.

(2) After the system initialization, the node will begin its periodic events in S-MAC

frames. One of them is the sample event to sample environmental data by the

sensor circuit, whose WCET is denoted as Tsample.

(3) After getting the data from the sensor, The tx application event is needed to

process the sensed data. The WCET of this event is denoted as Tapp_tx. Similarly,

in case of a reception, a sensor node needs to process the received data, and this

event is called the rx application event. Also, the WCET of this event is denoted

as Tapp_rx.

(4) The byte rx event and byte tx event are the byte ready interrupt services for the

Figure 3. The events in the S-MAC frame (I Event: the initialization event, S Event: the sample

event, A1 Event: the tx application event, A2 Event: the rx application event, T Events: a series of tx

byte events and rx byte events, C Events: a series of S-MAC clock events).
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communication, and their WCET are denoted as Tbyte_rx and Tbyte_tx. Also, the

maximum number of occurrences of these events are bounded by the maximum

number of bytes received and transmitted within one S-MAC frame.

(5) S-MAC has an important timer fired event, called the s-mac clock event. This

event occurs every 1 ms to serve all features of S-MAC, including the periodical

sleep scheme, the control message exchange, etc. The WCET of this event is

denoted as Tsmac_clock.

(6) The total worst-case CPU active time in one S-MAC frame can be obtain by

Equation (3) with considering the TinyOS overhead denoted as , where

n1 is the maximum number of bytes received in one S-MAC frame, n2 is the

maximum number of bytes transmitted in one S-MAC frame, and n3 is the

number of S-MAC clock timer fired.

(7) Besides all these events above and TinyOS overhead, CPU will be in the idle state

during the rest of time in one S-MAC frame. The CPU idle time in one S-MAC

frame is called Tidle, Tsmac is the duration of one S-MAC frame. Thus, we can

compute Tidle by Equation (4). In addition, all notations used for CPU active time

analysis are summarized in Table II.

Tactive = Tapp_rx + Tapp_tx + Tsample + n1 × Tbyte_rx

+ n2 ×Tbyte_tx + n3 × Tsmac_clock+ (3)

Tidle = Tsmac − Tactive (4)

4.3.2 Bounding Worst-Case Execution Time for The Events. To bound the WCET for

all events requested for the worst-case CPU energy consumption analysis, we need to

set up an ILP formulation including the objective function and constraints

[Jayaseelan et al. 2006; Li and Malik 1995] following the CFG of this program which

can be automatically generated in our approach. Equation 5 is the objective function

for estimating the WCET, where ci is the execution time of each basic block, and bi

T tinyos
overhead

T tinyos
overhead

Table II. Notations used for CPU active time analysis.

Time Notation

initialization event Tinit

tx application Tapp_tx

rx application Tapp_rx

tx byte event Tbyte_tx

rx byte event Tbyte_rx

s-mac clock timer event Tsmac_clock

sample event Tsample 

TinyOS overhead

CPU idle time Tidle

CPU active time Tactive

S-MAC frame time Tsmac

T tinyos
overhead
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is the weight of each basic block.

max (5)

(6)

(7)

(8)

The ILP constrains are derived from the CFG of the program. The relationship

between the caller and callee functions is presented as function call edges [AVRORA

2010]. The ILP constraints are based on the conclusion that the execution count of

each basic block must be equal to both the sum of the control flow going into it and

the sum of the control flow going out of it [Li and Malik 1995], which are presented

as equality equations. Equations (6), (7) and (8) are the equality ones, where  is

the weight of the in-edge,  is the weight of the out-edge,  is the weight of

the function call in-edge, and  is the weight of the function call out-edge of basic

block i. Equation (8) is needed for each function call out-edge of basic block i

separately. In addition, the range of loop bounds should be denoted as ILP

constraints, which are presented as inequality equations. Equation (9) is the

inequality equation, where  is the entry edge of the header block hi of loop i, and

m is the upper bound of the number of iterations of this loop.

(9)

The algorithm for generating the ILP objective function and constraints is

summarized in Figure 4. First, our algorithm generates the objective function, which

indicates that our objective is to obtain maximum execution cycles of the target

program (Lines 1-7). Second, our algorithm exhausts all basic blocks to generate

structural constraints between basic blocks and their entry edges except the entry

basic block of each function in the program (Lines 8-14), as well as equality structural

constraints between basic blocks and their exit edges except the exit basic block of

each function in the program (Lines 15-18), and structural constraints between basic

blocks and their function call edges (Lines 19-24). Third, our algorithm exhausts all

loops to generate the inequality constraints based on the relation between the entry

edge of this loop and the header basic block (Lines 25-32). Last, our algorithm

specifies that the weight of all basic blocks in a target program should be equal or

greater than zero (Lines 33-38), and the weight of entry basic block of the whole

program should be one (Line 39). It should be noted that this algorithm can be

computed efficiently. Suppose a loop has N basic blocks and M Loops, the complexity

of our algorithm is O(3 ×N +M).

An example is shown in Figure 5 to illustrate the method of building equality

equations of ILP constraints in our work for bounding worst-case energy consumption

of the program. Figure 5(a) demonstrates the CFG of this example, and Figure 5(b)

 

i 1=

n

∑ ci bi×{ }

bi −  

j 1=

n

∑ dj
i_in

{ } = bi −  

j 1=

n

∑ dj
i_out

{ } = 0

bi −  

j 1=

n

∑ f j
i_in

{ } = 0

bi − f j
i_out

 = 0

dj
i_in

dj
i_out

f j
i_in

f j
i_out

ei
entry

m ei
entry

× hi– 0≥
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depicts the constraints generated. Figure 6 is an example to show how to build

inequality equations of ILP constraints in our research. Figure 6(a) shows the example

codes and its corresponding basic blocks, and Figure 6(b) shows the related CFG and

constraints generated.

4.4 Radio Energy Consumption Estimation

Radio energy consumption estimation follows our analysis to S-MAC strictly. In the

data gathering tree, source nodes, aggregation nodes and the base station have

several different S-MAC frames. In order to predict the worst-case lifetime, we need

to estimate the upper bound of radio energy consumption for each of these frames. In

addition, all notations used for following radio energy consumption estimation are

summarized in Table III.

4.4.1 Source Nodes. Source nodes are leaf nodes in the tree structured network, and

Figure 4. The algorithm to build the integer linear programming objective function and constraints.
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responsible for probing the surroundings and transmit the sensed data to aggregation

nodes. Thus, source nodes do not have S-MAC frames to receive DATA packets, as a

result we only need to compute the worst-case energy consumption in Tx frames and

idle frames.

According to our analysis on S-MAC, the worst-case scenario is to break the listen/

sleep scheme to extend duty cycles by the greatest extent. In the worst-case scenario,

the RTS packet is only successfully transmitted at the end of the regular DATA

segment. Thus, the radio receiving time in the regular DATA segment is Ttxframe_dataseg_rx

= Tdataseg −Trts_tx. The extended radio transmission time is Ttxframe_extend_tx = Tdata_tx.

The extended radio receiving time is Ttxframe_extend_rx = Ttxframe_space1 + Tcts_rx +

Ttxframe_space2 + Ttxframe_space3 + Tack_rx.

In the SYNC segment, the segment will have one SYNC packet transmission for

only one frame in each synchronization period, and the whole segment is used for

receiving SYNC packets from neighboring nodes for other frames in this period. The

worst-case radio receiving time for the latter circumstance is Tsynseg_rx_nosyntx = Tsynseg,

while that is Tsynseg_rx_synctx = Tsynseg −Tsync_tx for the first one. The radio transmission

time in the latter circumstance is Tsync_tx.

Figure 5. An example for building equality equations of ILP constraints.

Figure 6. An example for building inequality equations of ILP constraints.
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Therefore, the total worst-case radio receiving time in Tx fragment is: Ttxframe_radio_rx

= Tsynseg_rx_syntx + Ttxframe_dataseg_rx + Ttxframe_extend_rx with SYNC packet transmission, or

Ttxframe_radio_rx =Tsynseg_rx_nosynctx + Ttxframe_dataseg_rx +Ttxframe_extend_rx without SYNC packet

transmission. Also, the total worst-case radio transmission time in this kind of

fragment is: Ttxframe_radio_tx = Trts_tx + Ttxframe_extend_tx without SYNC packet transmission

Table III. Notations used for radio energy consumption estimation.

Description Notation

RTS packet transmission time Trts_tx

CTS packet transmission time Tcts_tx

CTS packet receiving time Tcts_rx

DATA packet transmission time Tdata_tx 

DATA packet receiving time Tdata_rx 

ACK packet transmission time Tack_tx 

ACK packet receiving time Tack_rx 

SYNC packet transmission time Tsync_tx 

DATA segment duration Tdataseg 

SYNC segment duration Tsynseg 

radio listen interval duration Tradio_listen 

radio transmission time in the SYNC segment Tsync_tx 

SYNC segment radio receiving time without SYNC packet Tx Tsynseg_rx_nosyntx

SYNC segment radio receiving time with SYNC packet Tx Tsynseg_rx_synctx

total radio receiving time in the Tx frame Ttxf_rame_radio_rx

total radio transmission time in the Tx frame Ttxframe_radio_tx

radio receiving time in the DATA segment of the Tx frame Ttxframe_dataseg_rx

extended radio transmission time of the Tx frame Ttxframe_extend_tx

extended radio receiving time of the Tx frame Ttxframe_extend_rx

maximum time to wait for the CTS packet in the Tx frame Ttxframe_space1

SIFS in IEEE 802.11 specification for the Tx frame Ttxframe_space2

maximum time to wait for the ACK packet in the Tx frame Ttxframe_space3

worst-case radio duty cycle time in the Tx frame Ttxf_rame_radio_duty

total radio receiving time in the idle frame Tidleframe_radio_rx 

worst-case radio duty cycle time in the idle frame Tidleframe_radio_duty

radio receiving time in the DATA segment of the Rx frame Trxframe_dataseg_rx

extended radio transmission time of the Rx frame Trxframe_extend_tx

extended radio receiving time of the Rx frame Trxframe_extend_rx

SIFS in IEEE 802.11 specification for the Rx frame Trxframe_space1

SIFS in IEEE 802.11 specification for the Rx frame Trxprame_space2

SIFS in IEEE 802.11 specification for the Rx frame Trxframe_space3
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or Ttxframe_radio_tx = Tsync_tx + Trts_tx + Ttxframe_extend_tx with SYNC packet transmission.

With the estimated worst-case radio transmission and receiving time, we can predict

its energy consumption by the energy model.

The total worst-case radio duty cycle time in this frame can be computed as

Ttxframe_radio_duty = Tradio_listen + Ttxframe_extend_tx + Ttxframe_extend_rx.

The idle frame is much simpler than the Tx frame, and the radio just follows the

regular listen/sleep scheme of S-MAC. For the frame with the SYNC packet

transmission, its worst-case radio receiving time is Tidleframe_radio_rx = Tradio_listen−

Tsync_tx, transmission time is simply Tsync_tx. The worst-case radio receiving time is

Tidleframe_radio_rx = Tradio_listen for the idle frame without the SYNC packet transmission.

Thus, the worst-case radio duty cycle is purely Tidleframe_radio_duty = Tradio_listen.

4.4.2 Aggregation Nodes. Aggregation nodes are intermediate nodes in the tree

structured network, and responsible for data aggregation, relaying, and further

processing. Thus, aggregation nodes have full set of S-MAC frames, including the Tx,

Rx, and idle frames. The worst-case energy consumption estimation approach in Tx

and idle frames is the same as source nodes.

Similarly, the worst-case scenario in the Rx frame is to break the listen/sleep

scheme to extend the DATA segment to the greatest extent. In the worst-case

scenario, the RTS packet is only successfully received at the end of the regular

listening interval, all other control and DATA packet transmissions occur during the

extended interval. Thus, the radio receiving time in the regular DATA segment is

simply Trxframe_dataseg_rx = Tdataseg. The extended radio transmission time is represented

as Trxframe_ extend_tx = Tcts_tx + Tack_tx. The extended radio receiving time is represented

as Trxframe_extend_rx = Trxframe_space1 + Trxframe_space2 + Tdata_rx + Trxframe_space3. Finally,

equations for the SYNC segment are identical to Tx frames. Equations to compute the

worst-case radio receiving and transmission time in Rx frames are similar to Tx

frames. Obviously, the maximum number of Rx frames in one DATA transmission

interval is determined by the number of child nodes and the length of their DATA

transmission intervals.

4.4.3 The Base Station. The base station is the root in the tree structure network,

and in charge of gathering all the data fluxing in the WSN. Consequently, only Rx

and idle frames occur in the base station. The worst-case energy consumption

estimation approach in Rx and idle frames is the same as the above equations.

4.5 Worst-Case Lifetime Estimation 

We can compute the energy consumption of different CPU and radio states in one

SMAC frame for the base, the source and the aggregation node by substituting the

time staying in different states into the energy model Equations (1) and (2), which are

detailed in Subsection 4.3 and 4.4. Then, we obtain the worst-case energy

consumption in one SMAC frame by adding up the energy consumption of different

states. Thus, with a specific battery energy budget, we can estimate the worst-case

life-time for each node depending on their types and positions in the network.

Basically, it may have non worst-case scenarios occurring in the runtime. However,
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if such cases happen, it reduces the energy consumption and then prolongs the WSN

lifetime. Thus, our static worst-case lifetime estimation is reasonably safe. Actually,

we provide a safe upper bound of energy consumption of each stage, but may lead to

the overestimation of worst-case energy consumption and lifetime. 

Our algorithm is summarized in Figure 7. At the beginning, we compute the WCEC

of the first ten S-MAC frames, since the S-MAC implementation on TinyOS indicates

that radio does not go to sleep in the first ten frames for neighbour searching (Lines

3-7). Our algorithm adds up the energy consumption of each S-MAC frame until the

battery energy budget exhaustion (Line 8). According to the type of the target node,

we have different processing based on our analysis to different worst-case energy

consumption scenarios for the base node (Lines 9-10), the source node (Lines 11-12),

and the aggregation node (Lines 13-14). The sensor circuit and EEPROM energy

consumption are also considered. We assume that the sensor circuit is always powered

on, and EEPROM is only in the standby state (Lines 15-16). Also, we need to count

the number of S-MAC frames elapsed (Line 17). Finally, our algorithm transforms the

number of S-MAC frames under the specific battery energy budget into the exact time

unit. Thus, we can obtain the worst-case lifetime of the target node by adding the life-

time of all S-MAC frames elapsed (Line 19). As we mentioned, once we know the life-

time of each node in the WSN, we can determine the life-time of the WSN by specific

strategies. Suppose a WSN has N nodes and M S-MAC frames can be supported by

the initial energy budget, the complexity of our algorithm is O(N ×M ).

4.6 Extension to Routing Protocols 

In recent years, researchers also put efforts on the routing protocols to improve the

Figure 7. The algorithm to estimate the worst-case lifetime of WSN nodes.
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energy efficiency of WSNs besides the MAC protocols. To minimize energy

consumption, routing techniques proposed for WSNs employ some well-known routing

tactics as well as tactics special to WSNs, e.g., data aggregation and in-network

processing, clustering, different node role assignment, and data-centric methods were

employed [Al-Karaki and Kamal 2004]. Although our preliminary work focuses on a

network with the predetermined routing paths and an energy-efficient MAC protocol

(i.e. S-MAC), we believe that our static analysis approach can be extended to handle

networks with energy-efficient routing protocols through analyzing their worst-case

energy consumption and lifetime scenarios. 

Let us take the widely used the LEACH (Low Energy Adaptive Clustering

Hierarchy) protocol as example to present the way of statically analyzing the worst-

case energy consumption and lifetime scenarios. LEACH randomly selects a few

sensor nodes as the cluster heads and rotates this role in each round to distribute the

energy load among the sensors in the network [Al-Karaki and Kamal 2004]. Also, the

cluster head nodes compress data arriving from the normal nodes in the respective

cluster, and send an aggregated packet to the base station, which lead to the cluster

head nodes consume significantly more energy than the normal nodes. More

information about the LEACH protocol can be found in [Heinzelman et al. 2000]. In

LEACH, the number of nodes selected as cluster head nodes are based on a

predetermined factor P. Suppose we has total N nodes in the network, and then we

have the number of C cluster head nodes, where C =N × P. Obviously, the worst-case

energy consumption scenario of each node is that this node is always chosen as the

cluster head node in each round during its lifetime. When we do the worst-case

lifetime estimation, we can always choose specific C nodes as the cluster head nodes

round by round till the depletion of their energy budget. Then, we choose other C

nodes as the header nodes from the remaining alive nodes till the depletion of their

energy budget as well. We repeat this operation till we run out the energy budget of

all the N nodes in the network in order to get the worst-case lifetime estimation.

Although this worst-case scenario may not happen in the runtime and lead to

overestimation, the worst-case lifetime estimation result is surely safe. Moreover, our

future study can also propose the worst-case lifetime predictable head nodes chosen

algorithm instead of the random chosen one in LEACH to offer the capability of

obtaining tighter estimation.

5. EXPERIMENTAL EVALUATION

5.1 Methodology 

The framework to evaluate our proposed static approach is shown in Figure 8. In our

approach, the TinyOS application file written in NesC language will firstly translated

to a C language file by the NesC pre-compiler. Then, all events C codes that need to

be analyzed are compiled by the avr-gcc compiler [AVR-GCC 2010] to generate binary

files, and with the same gcc optimization level set for compiling the entire TinyOS.

The binary files can be transformed into the assembly files by the auxiliary tools of

avr-gcc. These assembly files are the inputs to our WCET analyzer. Our WCET

analyzer is implemented by extending the CFG generation feature of a specific WSN
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simulator named AVRORA [Titzer et al. 2005]. The output of WCET analyzer is the

file containing ILP objective function and constraints, which will be solved by a

commercial ILP solver CPLEX [CPLEX 2010]. Finally, the lifetime analyzer will

generate our estimated results based on WCET analysis results, the network topology

and S-MAC parameters.

Besides the static analysis, we also performed the simulation by AVRORA.

AVRORA can run the actual AVR microcontroller programs [Titzer and Palsberg

2005], and accurately simulate the devices and the radio communication. This

simulator has an energy consumption analysis tool (AEON) [Landsiedel et al. 2005]

to simulate the energy consumption of each component on the MICA2 mote, including

the radio, the CPU, etc. Also, this simulator utilizes the same energy model used in

our static analysis.

Several typical applications are developed on TinyOS with the S-MAC protocol

implementation for our experimental evaluation. The characteristics of these TinyOS

applications are shown in Table IV. These TinyOS applications work on a specific tree

topology with 8 nodes to generate five sample sensor networks, as shown in Table V.

Table IV. The characteristic of TinyOS applications.

Application Description Usage

threshold

it periodically probes the environment and transmit the 

abnormal sensed data which exceeds a pre-defined 

threshold.

source node

average
it computes the average value of all received data, 

transmit it, and is a typical data aggregation application.
aggregation node

histogram
it generates histograms based on all received data or 

sensed data in a specific period of time.

source/aggregation 

node

maximum

it compares all received data, send out maximum one in a 

fixed time period, and is a typical data aggregation 

application.

aggregation node

binary search
it does not transmit the data which is from measuring 

surroundings directly but from the binary searched result.
source node

Figure 8. The static worst-case lifetime estimation framework.
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The transmission in all nodes is unicast with predetermined target addresses (i.e.,

routes are known in advance), and the transmission range of all nodes is set as 15

meters by TinyOS. We have 5 source nodes, 2 aggregation nodes, and the base station

in this experimental network. The topology of our experimental WSN and the

coordination of its nodes are given in Figure 9. The experimental network is actually

a typical data gathering tree mentioned in section 2. Also, through the topology

information, we can observe that three groups of communication interference nodes,

including the group 1 (nodes 0, 1, and 2), group 2 (nodes 2, 4, and 6), and group 3

(nodes 4, 5, and 7), since the distance between these nodes are within the

transmission range (i.e., 15 meters).

5.2 Experimental Results 

We generated five sample networks by utilizing different TinyOS applications on

different nodes in the experimental network topology. DATA packets transmission

intervals are set to different values in these applications to evaluate our static

analysis approach under different communication traffic loads, which are shown in

Table VI. The battery energy budgets for all nodes in the WSN are set to 200 and 400

Joules respectively. The major reason to provide the experimental results under

different energy budgets is to validate the correctness and consistence of our static

Table V. Programs run at each node in our WSN.

sample 1 2 3 4 5

node 0 threshold histogram threshold threshold binary search

node 1 threshold histogram threshold threshold binary search

node 2 average histogram maximum histogram histogram

node 3 base station base station base station base station base station

node 4 average histogram maximum histogram histogram

node 5 threshold histogram threshold threshold binary search

node 6 threshold histogram threshold threshold binary search

node 7 threshold histogram threshold threshold binary search

Table VI. DATA packets transmission intervals of all samples.

sample 1 2 3 4 5

node 0 1 frame 10 frames 10 frames 6 frames 1 frame

node 1 1 frame 10 frames 10 frames 6 frames 1 frame

node 2 6 frames 30 frames 30 frames 12 frames 6 frames

node 3 N/A N/A N/A N/A N/A

node 4 6 frames 30 frames 30 frames 12 frames 6 frames

node 5 1 frame 10 frames 10 frames 6 frames 1 frame

node 6 6 frames 30 frames 30 frames 12 frames 6 frames

node 7 1 frame 10 frames 10 frames 6 frames 1 frame
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analysis method if the experimental results under different energy budgets are stable.

Experimental results of both our static estimated and AVRORA simulated lifetime for

each node are recorded in Tables VII and VIII. Also, the average life-time of all nodes

in the network are recorded in these tables to indicate the lifetime of the WSN based

on the average life-time strategy. It should be noted that the longest simulation time

in our experiments is about 6.7 hours due to limited computer resources, while the

realistic WSN normally has longer life-time. However, this simulation time is long

enough to evaluate our work, since S-MAC frames just keep on repeating till the

depletion of battery.

We can observe an obvious difference between our static estimated worst-case

results and AVRORA simulated ones in Tables VII and VIII. Basically, WSN

simulators are designed to simulate the average-case performance of each node in the

network based on the average-case communication model, while our estimation

provides a worst-case result. Again, the difference between the static estimation and

simulation shows the importance to bound worst-case lifetime of the WSN. Although,

our estimated worst-case lifetime may not always be achieved in the runtime of the

network, it is definitely not safe for engineers to design their WSN based on simulated

average case results. The relationship between our static estimated and simulated

lifetime is shown in Figure 10.

Another observation is that the difference in samples 1 and 5 are significantly

Figure 10. The relationship between static estimated and simulated lifetime (S: simulated lifetime,

A: actual worst-case lifetime, E: estimated worst-case lifetime).

Figure 9. The topology of experimental tree structure WSN and the coordination of all nodes.
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larger than other samples. Take 200 Joules energy budget as example, the average

difference is 36.49% in sample 1 and 36.03% in sample 5, while the maximum average

difference in other samples is 18.15% in Table VII. Especially for nodes 0, 1, 6 and

7 in the samples 1 and 5, their difference is above 40% for 200 Joules energy budget.

DATA packet transmission intervals applied in samples 1 and 5 are smaller than

other samples. For nodes 0, 1, 6 and 7 in these two samples, both the DATA packet

transmission intervals are set to only one S-MAC frame, which is the heaviest

communication traffic load for S-MAC based WSNs. All these DATA packets

transmission are regarded to be successfully finished in our static analysis, which is

the worst-case energy consumption scenario in theory. However, a lot of transmissions

are blocked during the simulation based on the average-case communication model,

because nodes are very difficult to obtain a free wireless medium due to the heavy

traffic load. Then, the difference between the static estimated and simulated lifetime

is larger.

Also, we observe that the simulated lifetime of samples 1 and 5 is not always

Table VIII. Lifetime of all samples with the 400 Joules energy budget (unit: second).

Energy 

400 J

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

Sim Est Diff Sim Est Diff Sim Est Diff Sim Est Diff Sim Est Diff

node 0 23999.213246.844.80%23246.519152.217.61%24024.4 19167.620.22%23297.918531.020.46%23762.813246.844.25%

node 1 23846.313246.844.45%23225.419152.217.54%24020.9 19167.620.20%23181.218531.020.06%23854.913246.844.47%

node 2 20009.913536.332.35%20215.317917.411.37%20994.7 17944.314.53%19862.916594.116.46%20484.413412.134.53%

node 3 20204.116136.820.13%20027.319008.9 5.09% 19683.0 19020.3 3.37% 20198.517790.511.92%21277.816048.424.58%

node 4 20663.113536.334.49%20017.417917.410.49%20591.9 17944.312.86%20153.916594.117.66%19680.513412.131.85%

node 5 23415.313246.843.43%24072.819152.220.44%22479.5 19167.614.73%23383.818531.020.75%23447.013246.843.50%

node 6 23271.518531.020.37%20273.119792.7 2.37% 22341.3 19795.311.40%21636.319275.210.91%22976.718495.119.50%

node 7 23378.013246.843.34%24070.919152.220.43%22312.1 19167.614.09%23401.918531.020.81%23419.313246.843.44%

Average22348.414341.035.83%21893.618905.713.65%22056.0 18921.814.21%21889.618047.217.55%22362.914294.436.08%

Table VII. Lifetime of all samples with the 200 Joules energy budget (unit: second).

Energy 

200 J

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

Sim  Est Diff Sim  Est Diff Sim  Est Diff Sim Est Diff Sim  Est Diff

node 0 11880.7 6626.6 44.22% 11462.49578.016.44%12035.1 9584.520.36%11979.99265.5 22.66%11775.76626.6 43.73%

node 1 11860.4 6626.6 44.13% 11332.6 9578.015.48%12036.0 9584.520.37%12008.19265.5 22.84%11663.66626.643.19%

node 2 10527.8 6770.1 35.69% 9826.1 8958.0 8.83% 10716.7 8969.616.30%10514.18299.6 21.06%10365.06708.635.28%

node 3 10588.5 8071.6 23.77% 10277.09505.1 7.51% 10038.0 9510.2 5.26% 9286.2 8896.6 4.20% 10423.78025.523.01%

node 4 9837.9 6770.1 31.18% 10128.08958.011.55%10756.6 8969.616.61%10131.38299.6 18.08%10269.96708.634.68%

node 5 11916.6 6626.6 44.39% 12018.09578.020.30%12012.1 9584.520.21%11678.7 9265.5 20.66%11503.46626.642.39%

node 6 11756.6 9265.5 21.19% 10710.79897.0 7.60% 10985.5 9898.3 9.90% 10898.49638.3 11.56%11778.09248.821.47%

node 7 11986.7 6626.6 44.72% 12028.19578.020.37%12010.9 9584.520.20%11708.29265.5 20.86%11630.36626.643.02%

Average11294.4 7173.0 36.49% 10972.99453.813.84%11323.9 9460.716.45%11025.69024.5 18.15%11176.27149.736.03%
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shorter than other sample networks, although they have shorter DATA packet

transmission intervals. For instance, the average lifetime of 8 nodes in sample 1 is

11294.4 seconds, while it is 10972.9 seconds in sample 2 with 200 Joules energy

budget from Table VII. Ordinarily, the more Tx frames occur, the more energy

consumes, which will shorten lifetime of nodes. Actually, although the occurrence of

Tx frames increases, the interference among neighboring nodes increases and thus

nodes can not transmit in most Tx frames due to interference avoidance. Therefore,

their lifetime is prolonged instead of shortened in the average-case communication

model.

Last, the major components targeted in this paper are the CPU and radio.

Consequently, the sources of overestimation can be categorized into two folds,

including the CPU and radio energy consumption estimation, respectively. Table XI

shows the worst-case energy consumption distribution between the CPU, radio, and

other components (i.e., EEPROM and sensor) under 400 Joules energy budget. We can

Table IX. The comparison of experimental lifetime (unit: second) results between our static method

and the all-on method with the 200 Joules budget.

Energy 

200 J

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

All-On Static Diff All-On Static Diff All-On Static Diff All-On Static Diff All-On Static Diff

node 0 3399.9 6626.6 94.91% 3399.9 9578.0 181.71%3399.9 9584.5 181.91% 3399.9 9265.5 172.52%3399.9 6626.6 94.91%

node 1 3399.9 6626.6 94.91% 3399.9 9578.0 181.71%3399.9 9584.5 181.91% 3399.9 9265.5 172.52%3399.9 6626.6 94.91%

node 2 3399.9 6770.1 99.13% 3399.9 8958.0 163.48%3399.9 8969.6 163.82% 3399.9 8299.6 144.11%3399.9 6708.6 97.32%

node 3 3399.9 8071.6 137.41%3399.9 9505.1 179.57%3399.9 9510.2 179.72% 3399.9 8896.6 161.67%3399.9 8025.5 136.05%

node 4 3399.9 6770.1 99.13% 3399.9 8958.0 163.48%3399.9 8969.6 163.82% 3399.9 8299.6 144.11%3399.9 6708.6 97.32%

node 5 3399.9 6626.6 94.91% 3399.9 9578.0 181.71%3399.9 9584.5 181.91% 3399.9 9265.5 172.52%3399.9 6626.6 94.91%

node 6 3399.9 9265.5 172.52%3399.9 9897.0 191.10%3399.9 9898.3 191.14% 3399.9 9638.3 183.49%3399.9 9248.8 172.03%

node 7 3399.9 6626.6 94.91% 3399.9 9578.0 181.71%3399.9 9584.5 181.91% 3399.9 9265.5 172.52%3399.9 6626.6 94.91%

Average 3399.9 7173.0 110.98%3399.9 9453.8 178.06%3399.9 9460.7 178.26% 3399.9 9024.5 165.43%3399.9 7149.7 110.29%

Table X. The comparison of experimental lifetime (unit: second) results between our static method

and the all-on method with the 400 Joules budget.

Energy 

400 

Sample   1 Sample 2 Sample 3 Sample 4 Sample 5

All-On Static Diff All-On Static Diff All-On Static Diff All-On Static Diff All-On Static Diff

node 0 6799.7 13246.8 94.81% 6799.7 19152.2181.66% 6799.7 19167.6181.89% 6799.7 18531.0172.53% 6799.7 13246.8 94.81%

node 1 6799.7 13246.8 94.81% 6799.7 19152.2181.66% 6799.7 19167.6181.89% 6799.7 18531.0172.53% 6799.7 13246.8 94.81%

node 2 6799.7 13536.3 99.07% 6799.7 17917.4163.50% 6799.7 17944.3163.90% 6799.7 16594.1144.04% 6799.7 13412.1 97.25%

node 3 6799.7 16136.8 137.32% 6799.7 19008.9179.55% 6799.7 19020.3179.72% 6799.7 17790.5161.64% 6799.7 16048.4136.02%

node 4 6799.7 13536.3 99.07% 6799.7 17917.4163.50% 6799.7 17944.3163.90% 6799.7 16594.1144.04% 6799.7 13412.1 97.25%

node 5 6799.7 13246.8 94.81% 6799.7 19152.2181.66% 6799.7 19167.6181.89% 6799.7 18531.0172.53% 6799.7 13246.8 94.81%

node 6 6799.7 18531.0 172.53% 6799.7 19792.7191.08% 6799.7 19795.3191.12% 6799.7 19275.2183.47% 6799.7 18495.1172.00%

node 7 6799.7 13246.8 94.81% 6799.7 19152.2181.66% 6799.7 19167.6181.89% 6799.7 18531.0172.53% 6799.7 13246.8 94.81%

Average 6799.7 14341.0 110.91% 6799.7 18905.7178.04% 6799.7 18921.8178.27% 6799.7 18047.2165.41% 6799.7 14294.4110.22%
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observe that the CPU energy consumption is the largest part. The reason is that the

energy efficient MAC protocol (i.e., S-MAC) periodically shut down the radio, which

greatly saves the energy. Thus, to improve the accuracy of our worst-case energy

consumption estimation in the future, we need to put the first priority on improving

the accuracy of worst-case CPU energy consumption, which can be achieved through

improving the WCET estimation. The current WCET path obtained from the ILP

based method may be infeasible in the runtime. Therefore, we may get tighter WCET

results through only considering the feasible WCET path in the runtime. More

information about WCET estimation through feasible path techniques can be found in

[Suhendra et al. 2006]. However, it is still very useful to bound tighter worst-case

energy consumption scenarios through considering shortening the worst-case radio Rx

duration in the worst-case scenarios, since we still have obvious radio energy

consumption from the energy distribution.

Table XI. The worst-case energy consumption distribution under 400 Joules budget (Unit: Joule).

Energy 

400 J

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

CPU Radio Other CPU Radio Other CPU Radio Other CPU Radio Other CPU Radio Other

node 0 262.3 109.8 27.9 238.2 121.5 40.3 238.0 121.6 40.4 240.3 120.7 39.0 262.3 109.8 27.9

node 1 262.3 109.8 27.9 238.2 121.5 40.3 238.0 121.6 40.4 240.3 120.7 39.0 262.3 109.8 27.9

node 2 267.2 104.3 28.5 242.4 119.9 37.7 242.3 120.0 37.7 249.8 115.2 35.0 268.3 103.6 28.1

node 3 253.6 112.4 34.0 236.1 123.8 40.1 236.1 123.9 40.0 243.6 118.9 37.5 254.2 112.0 33.8

node 4 267.2 104.3 28.5 242.4 119.9 37.7 242.3 120.0 37.7 249.8 115.2 35.0 268.2 103.6 28.2

node 5 262.3 109.8 27.9 238.2 121.5 40.3 238.0 121.6 40.4 240.3 120.7 39.0 262.3 109.8 27.9

node 6 240.2 120.7 39.1 235.1 123.2 41.7 235.0 123.3 41.7 237.0 122.4 40.6 240.6 120.4 39.0

node 7 262.3 109.8 27.9 238.2 121.5 40.3 238.0 121.6 40.4 240.3 120.7 39.0 262.3 109.8 27.9

Average 259.7 110.1 30.2 238.6 121.6 39.8 238.5 121.7 39.8 242.7 119.3 38.0 260.1 109.9 30.1

Table XII. Comparison among Three Methods.

Methods Static Analysis Simulation Model-Checking

Objective Estimate the lifetime of 

WSN to guide sensor 

network design

Estimate the lifetime of 

WSN to guide sensor 

network design

Compare the worst-case 

life-time performance of 

routing protocols

Accuracy Absolute value of the 

WSN life-time

Absolute value of the 

WSN life-time

Relative value of the WSN 

life-time

Result Worst-case life-time 

estimation of WSN

Average-case life-time 

estimation of WSN

Worst-case life-time 

estimation of WSN

Scope All components and 

operations

All components and 

operations

only radio broadcast and 

unicast operations

Efficiency High Medium Low
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5.3 Methods Comparison 

To evaluate the improvement of our static method, we compare it with the most

straightforward static analysis one called the all-on method. Basically, the all-on

method will assume CPU remains active 100% of the lifetime, and the radio is always

in the Tx state.

Tables IX and X show the difference between our estimated worst-case lifetime and

that of the all-on method. This difference indicates the necessity of utilizing our

method, since the all-on one is too pessimistic. Also, the improvement varies from

94.81% to 191.14%, which depends on the exact working load of each node. In other

words, the heavier the working load, the closer our estimated result to that of the all-

on method. Also, it means that the hardware resources cannot satisfy the worst-case

requirement of WSNs if our estimated result is equal to the all-on method.

Up to now, three different types of approach are proposed to predict the lifetime of

a WSN prior to deployment. Simulation is the most widely used method with the help

of several kinds of WSN simulators. However, they can only estimate the average-case

lifetime of a WSN. Model-checking was the first approach to estimating the worst-case

lifetime of a WSN proposed by L. Mounier, et al. in [Mounier et al. 2007]. However,

their goal is essentially to compare protocols, not to have an absolute value of the

network lifetime [Mounier et al. 2007]. They focused on the relative worst-case

lifetime derived from different routing protocols by only considering radio energy

consumption of unicast and broadcast operations. Thus, results by their method

cannot be used to direct the design of a WSN. Our proposed static analysis method,

on the other hand, is the first to estimate the absolute value of worst-case network

lifetime safely and efficiently. In addition, our method works on TinyOS which is a

real OS of WSNs. Our estimation results can be directly used to guide the design of

WSN. Detailed comparison of these three methods is illustrated in Table XII.

6. CONCLUSIONS

In this paper, we proposed a static analysis approach to estimating the worst-case

lifetime of a WSN. This is a hybrid approach which utilizes the ILP and worst-case

energy consumption scenarios analysis on S-MAC. Our evaluation revealed that the

proposed approach provides safe and accurate worst-case lifetime estimation, as

compared to AVRORA simulated results. Based on our worst-case lifetime estimation,

a WSN can be designed safely and predictably.

In the future, we plan to work with several different MAC protocols, topologies and

data collections schemes. Also, we plan to implement routing protocols in our

estimation.
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