
Journal of Computing Science and Engineering, Vol. 4, No. 2, June 2010, Pages 173-187.

Three Effective Top-Down Clustering Algorithms

for Location Database Systems

Kwang-Jo Lee and Sung-Bong Yang

Department of Computer Science, Yonsei University, Seoul, Republic of Korea

{kjlee5435, yang}@cs.yonsei.ac.kr

Received 10 May 2010; Revised 24 May 2010; Accepted 27 May 2010

Recent technological advances in mobile communication systems have made explosive growth in
the number of mobile device users worldwide. One of the most important issues in designing a
mobile computing system is location management of users. The hierarchical systems had been
proposed to solve the scalability problem in location management. The scalability problem
occurs when there are too many users for a mobile system to handle, as the system is likely to
react slow or even get down due to late updates of the location databases. In this paper, we
propose a top-down clustering algorithm for hierarchical location database systems in a wireless
network. A hierarchical location database system employs a tree structure. The proposed
algorithm uses a top-down approach and utilizes the number of visits to each cell made by the
users along with the movement information between a pair of adjacent cells. We then present
a modified algorithm by incorporating the exhaustive method when there remain a few levels
of the tree to be processed. We also propose a capacity constraint top-down clustering algorithm
for more realistic environments where a database has a capacity limit. By the capacity of a
database we mean the maximum number of mobile device users in the cells that can be handled
by the database. This algorithm reduces a number of databases used for the system and
improves the update performance. The experimental results show that the proposed, top-down,
modified top-down, and capacity constraint top-down clustering algorithms reduce the update
cost by 17.0%, 18.0%, 24.1%, the update time by about 43.0%, 39.0%, 42.3%, respectively. The
capacity constraint algorithm reduces the average number of databases used for the system by
23.9% over other algorithms.

Categories and Subject Descriptors: System & Architecture

General Terms: Network and Communication

Keyword: Location Database, Top-down Clustering, Location Management

1. INTRODUCTION

The world is experiencing a dramatic increase in the number of mobile device users,

owing mainly to the technological advances in mobile devices and wireless data

Copyright(c)2010 by The Korean Institute of Information Scientists and Engineers (KIISE).

Permission to make digital or hard copies of part or all of this work for personal or classroom use

is granted without fee provided that copies are not made or distributed for profit or commercial

advantage and that copies bear this notice and the full citation on the first page. Permission to

post author-prepared versions of the work on author's personal web pages or on the noncommercial

servers of their employer is granted without fee provided that the KIISE citation and notice of the

copyright are included. Copyrights for components of this work owned by authors other than

KIISE must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to

post on servers, or to redistribute to lists, requires an explicit prior permission and/or a fee.

Request permission to republish from: JCSE Editorial Office, KIISE. FAX +82 2 521 1352 or email

office@kiise.org. The Office must receive a signed hard copy of the Copyright form.

174 Kwang-Jo Lee and Sung-Bong Yang

Journal of Computing Science and Engineering, Vol. 4, No. 2, June 2010

networking (WIBRO, 3G LTE, and 4G) [Frattasi et al. 2006; Nam et al. 2008; Zheng

et al. 2008]. One of the important issues in designing a mobile computing system is

location management. It is necessary to manage users’ location information as

efficiently as possible, since users move around the network and their current

locations should be updated in the databases. Especially when there are many users

in a network, the mobile system suffers from the scalability problem. By scalability,

we mean “the ability of a network to adjust or maintain its performance as the size

of the network increases (and the demands made upon it increases), yet the

performance of a network tends to degrade as the number of mobile users increases”

[Rahaman et al. 2007; hin and Süral 2007; Pitoura and Samaras 2001; Jixiong et al.

2005; Li et al. 2004].

To address the scalability problem in a mobile computing system, Pitoura and

Samaras proposed a hierarchical system with a tree topology [Pitoura and Samaras

2001]. This system relieves the scalability problem by locally updating the databases

in the system. In a hierarchical database system, clustering the databases is a very

important issue to reduce the update cost. But the optimal clustering can only be

obtained exhaustively because the user moving patterns are dynamic in their nature.

Jixiong et al. developed a location database clustering algorithm and later called it

the set-cover algorithm [Jixiong et al. 2005]. Their algorithm utilizes the “greedy”

approximation set-cover algorithm for clustering with a bottom-up approach. However,

once some of the databases in cells are grouped into a cluster at the bottommost level,

it is difficult to guarantee that the movement information among the cells is used

properly for clustering in the upper levels toward the root.

In this paper, we propose a top-down clustering algorithm for the location databases.

In our clustering algorithm, we consider the number of visits to each cell by users,

called the visit count of a cell, as well as the movement information between a pair

of adjacent cells; that is, our algorithm takes into account both the node (cell) and

edge information, while the set-cover algorithm utilizes only the edge information for

clustering. We modified the proposed algorithm by incorporating the exhaustive

method when there remain a few levels of the tree to be processed.

Although the proposed top-down algorithms enhance the update performance, these

algorithms and the set-cover algorithm always construct full n-ary trees as their

Figure 1. A hierarchical Location Database System.

Three Effective Top-Down Clustering Algorithms for Location Database Systems 175

Journal of Computing Science and Engineering, Vol. 4, No. 2, June 2010

hierarchical structures. But if we consider the capacity of a database in the system,

these algorithms suffer from higher update costs. By the capacity of a database we

mean the maximum number of mobile device users in the cells that can be handled

by the database. To improve the update cost, we present a capacity constraint top-

down clustering algorithm by modifying the proposed top-down clustering algorithm.

The hierarchical structure of a tree constructed by the capacity constraint top-down

clustering algorithm is not necessarily a full n-ary tree, since, during the top-down

construction, a node may not be split if the database of the node can handle all the

mobile device users in the cells managed by the database.

The experimental results show that the proposed, top-down, modified top-down, and

capacity constraint top-down clustering algorithms reduce the update cost by 17.0%,

18.0%, 24.1%, the update time by about 43.0%, 39.0%, 42.3% over the set-cover

algorithm, respectively. The results also show that the capacity constraint algorithm

reduces the average number of databases used for the system by 23.9% over other

algorithms.

The rest of this paper is organized as follows that Section 2 provides the

backgrounds on the location database management in a cellular network; the

proposed location database clustering algorithms are described in Section 3; in Section

4, the experimental results are given as well as the performance analysis; and finally

in Section 5, conclusions are made.

2. BACKGROUNDS

2.1 Hierarchical Location Database Management

A hierarchical location database system has a tree topology as shown in Figure 2. The

tree in the figure is a ternary tree in which nodes are databases. A leaf node is

associated with a specific cell in the network. Assume that the tree is constructed with

the network in Figure 3. Each vertex in the network represents a cell, an edge

indicates the link between a pair of adjacent cells, and a weight on an edge denotes

an amount of movements of the users between the cells.

In maintaining the databases in the system while users move around the network,

we should reduce the update cost as much as possible by properly clustering the

databases. In Figure 3, nine cells are grouped into three clusters and Figure 2

illustrates the hierarchical system based on the clustering in Figure 3.

We now define how to compute the update cost of the location databases in the

hierarchical system for given users moving patterns as shown in Figure 3. We follow

the same definitions as those in [Jixiong et al. 2005; Li and Lam et al. 2004]. Let each

of n databases belong to a cell i, where i=1, 2, …, n. Then the update cost of the

movements made by the users between cells i and j can be defined as UpdateCost

(i,j)=(2×h(i,j)+1)×Moves(i,j), where h(i,j) is the height of the lowest common

ancestor between i and j in the tree, and Moves(i,j) is the number of moves between

cells i and j made by the users. Note that the length of the path from i to j via the

lowest common ancestor is 2*h(i,j). We add 1 to the length, since the database in each

node along the path from i to j via the lowest common ancestor should be updated.

For example, UpdateCost(3,6)=(2×2+1)×4=20 and UpdateCost(4,1)=(2×1+1)×2=6.

176 Kwang-Jo Lee and Sung-Bong Yang

Journal of Computing Science and Engineering, Vol. 4, No. 2, June 2010

2.2 The Set-Cover Algorithm

Jixiong et al. presented a location database clustering algorithm which is based on the

greedy set-cover approximation algorithm [Jixiong et al. 2005; Chvátal 1979]. The

algorithm constructs a tree using a bottom-up approach and is described below.

The above algorithm clusters the cells for only one level. We assume that the

number n of cells in the input network is kc such that the hierarchical system is

implemented with a full k-ary tree and c is a positive integer. G is supposed to have

a weight on each edge connecting a pair of adjacent cells. The weight indicates the

number of moves between the cells made by the users.

In the above algorithm, after a cell is inserted into a cluster, the cell is removed

Algorithm I. The Set-cover Algorithm.

Input: Graph G=(V, E), where V={1, 2, 3, …, n} and E is the set of weighted edges connecting

the cells

Output: C1, C2, … , Cn/k

for i=1 to n/k do

1. Insert the cells incident to the edge with the largest weight in G into cluster Ci

2. Select the cell x that has the largest sum of the weights of the edges between x and each

of the cells in Ci and insert x into Ci

3.while (|Ci| < k)

select the cells as in Line 2 insert them into Ci

return C1, C2, … , Cn/k

Figure 2. A Ternary Tree in a Hierarchical System.

Figure 3. A Network Represented as a Graph.

Three Effective Top-Down Clustering Algorithms for Location Database Systems 177

Journal of Computing Science and Engineering, Vol. 4, No. 2, June 2010

from G and hence all the edges incident to the cell are also removed from G. The ties

in Lines 1 and 2 are broken arbitrarily. In each iteration of the for-loop, a cluster is

constructed in such a way that the two endpoint cells incident to the edge with the

largest weight are included into the cluster, and thereupon each cell with the largest

connectivity with the cluster is inserted into the cluster ‘greedily’ until there are k

cells in the cluster.

Let’s trace the set-cover algorithm with the network in Figure 3. The tree is

ternary, so k=3, V={1, 2, 3, 4, 5, 6, 7, 8, 9}. Since edge (2,5) has the largest weight,

its endpoints 2 and 5 are inserted into C1, i.e., C1={2,5}, and then cells 3 and 6 have

the highest connectivity with C1; the sum of the weights of the edges (3,2) and (3,5)

is 3 and similarly the sum is 3 for cell 6. The ties are broken arbitrarily, and so, say

3 is chosen here. Hence C1={2, 5, 3}.

Now the algorithm proceeds with the remaining subgraph induced by V={1, 4, 6, 7,

8, 9} to get C2. The result of the second iteration of the for-loop is C2={4,7,1}. Finally

C3 has the rest of the cells in G. So, finally the algorithm returns the clusters, C1={2,

5, 3}, C2={4, 7, 1}, and C3={6, 8, 9} as in the bottom-most level of the tree in Figure 2.

For the next level clustering, the set-cover algorithm creates a new network by

treating each cluster as a node and by connecting an edge between two nodes if a cell

in one node is adjacent to a cell in the other node in the previous level. The weight

of an edge in the new network is the summation of the weights of the edges, each of

which is connecting the two cells in different nodes. And then the set-cover algorithm

is applied to this new network to cluster the nodes, and keeps doing so until the nodes

are grouped into one cluster.

Although the set-cover algorithm is very simple, it constructs ‘very good’ clusters

and is almost unbeatable by any bottom-up approaches, for example, the ones based

on genetic algorithms and simulated annealing techniques. Nevertheless the set-cover

algorithm is not an optimal algorithm; hence there is still some room for improvement.

Notice that in a bottom-up clustering algorithm, when some clusters are not ‘good’ in

a level, the clustered results may be propagated to the upper levels. To alleviate such

problems, we suggest a top-down clustering with the visit count information along

with the edge connectivity.

3. THE TOP-DOWN CLUSTERING ALGORITHMS

We now describe the proposed clustering algorithms in detail. First we describe a top-

down clustering algorithm and then present a modified version to reduce the update

cost further. Finally the capacity constraint top-down clustering algorithm is presented.

3.1 The Top-down Clustering Algorithm

The proposed algorithm first calculates the visit count of each cell (node) in the

network. It then finds the node that has the largest visit count. We call the node the

seed node. It then inserts it into a cluster which is initially empty. Now starting from

the seed node, the algorithm selects the node with the largest movements to the cell(s)

in the cluster and inserts it to the cluster. It keeps doing this until the cluster has the

proper number of nodes. And then it checks the size of a cluster. If the cluster has

more than k nodes, then the cluster should be split further by calling the algorithm

178 Kwang-Jo Lee and Sung-Bong Yang

Journal of Computing Science and Engineering, Vol. 4, No. 2, June 2010

recursively. We again assume that the number n of cells in the input network is kc

such that the hierarchical system is implemented with a full k-ary tree and c is a

positive integer. Note that for a recursive call, the graph H is a subgraph of the input

graph G induced by V.

Initially, we call the algorithm with Top-down Approach(G,n), where G is the input

network and n is the number of cells in the network. The above algorithm has two

for-loops. The algorithm constructs k clusters with the first for-loop and splits the

clusters by recursive calls in the second for-loop. The recursive calls are made until

each cluster has k cells.

We now trace the proposed algorithm with an input network in Figure 4(a). We

assume that k=3, n=33=27. In Line 1 the visit count of each cell is obtained as in Figure

4(b). In this example, 7 becomes the seed node for cluster C1 as shown in Figure 4(c).

In Lines 4~6, we find the cell x that has the largest sum of the weights of the edges

between x and the cells in C1 one by one until there are 27/3=9 cells in C1. Figure 4(c)

shows the result, C1={7, 6, 1, 2, 8, 3, 13, 12, 11}, with the order of the ‘greedy’ selections

by the algorithm. During the selection, when the tie occurs, the algorithm selects the

one with the smallest index. Similarly, C2 ={15, 10, 14, 9, 4, 5, 19, 20, 25} and C3={17,

22, 16, 21, 18, 23, 24, 26, 27} are obtained after the while-loop is terminated and are

shown in Figure 4(d) and (e), respectively. In Line 7, since the size of each cluster is

greater than k=3, we call it Top-down Approach(C1, 27/3) recursively. Figure 4(f) shows

the subgraph of the input graph G induced by C1. Figure 4(g) shows the visit counts

for the network in Figure 4(f). We now get C'1={7, 6, 1}, C'2={12, 11, 13}, and C'3={3,

2, 8} in turn, as shown in Figure 4(h)~(j). Upon returning from the call Top-down

Approach(C1, 27/3), we get C1 = {7 6 1; 12 11 13; 3 2 8}. We can get C2 = {15 10 14; 20

25 19; 4 9 5} and C3={17 22 16; 23 18 24; 26 21 27} in the same manner. So the final

output is {7, 6, 1}, {12, 11, 13}, {3, 2, 8}, {15, 10, 14}, {20, 25, 19}, {4, 9, 5}, {17, 22, 16},

{23, 18, 24}, and {26, 21, 27}. The hierarchical system constructed based on the output

of the proposed algorithm is shown in Figure 4(k).

Algorithm II. The Top-down Algorithm.

Top-down Approach(H, N)

//Input: Graph H=(V,E), where V={1, 2, 3, … , N} and E is the set of weighted edges

connecting the cells

//Output: C1, C2, … , Ck

for i=1 to k do

1. Calculate the visit count of each cell in H

2. Select the cell x with the largest visit count

3. Insert x into Ci and remove x from H

4. while (the number of cells in Ci N/k)

5. Select the cell y that has the largest sum of the weights of the edges between the cell and

each of the cells in Ci

6. Insert y into Ci and remove y from H

for j=1 to k do // splitting a cluster if its size > k

7. if (|Cj| > k) then Cj=Top-down Approach(Cj, N/k)

return C1, C2, … , Ck;

Three Effective Top-Down Clustering Algorithms for Location Database Systems 179

Journal of Computing Science and Engineering, Vol. 4, No. 2, June 2010

Note that the update cost of the databases on the system in Figure 4(k) is 973,

while the cost on the system in Figure 5 constructed with the set-cover algorithm on

the same input is 990.

3.2 The Modified Clustering Algorithm

In this section we propose a modified top-down algorithm. In the top-down approach,

 Figure 4. A Trace of the Proposed Algorithm.

180 Kwang-Jo Lee and Sung-Bong Yang

Journal of Computing Science and Engineering, Vol. 4, No. 2, June 2010

the number of nodes that participate into clustering becomes smaller since the

clustering is proceeded from top to bottom. In the modified algorithm, we stop calling

Top-down Approach recursively at a particular level l, and find the optimal clustering

for the networks at level l with the exhausted method. This technique is exactly the

same idea used when sorting a huge file, quick sort is used recursively until the file

size gets smaller; from then on, an elementary sort such as the insertion sort is used.

It was found out that when the number of nodes is not greater than 9, it is

reasonable to stop the recursive calls for node splitting. If it is greater than 9, it takes

longer time to get the optimal clustering. We obtained this value after various

experiments such as 9, 27, 81, and 729.

3.3 The Capacity Constraint Top-Down Clustering Algorithm

The set-cover algorithm and the above proposed algorithms do not care about the

capacity of a database. But in reality a database cannot handle unlimited number of

mobile device users in the cells; hence, we should not ignore such a factor for a

location database system. An algorithm that does not take into account the capacity

factor constructs a full n-ary tree in which some nodes should have not been split.

Such unnecessary node splits result in using more databases for the system.

By modifying the top-down clustering algorithm we propose a capacity constraint

top-down clustering algorithm. During a recursive call for node splitting, we check if

the capacity of a node (cluster) is enough for handling the users, that is, it is not

greater than the summation of movements in the cells of the cluster. If so, we do not

split the node. Otherwise, we spilt it recursively. The following code replaces Line 7

of the top-down clustering algorithm for the capacity constraint clustering algorithm.

Since a tree generated with this algorithm is not always a full n-ary tree, the

update cost is expected to be smaller than those of other algorithms and the number

of databases deployed should not be greater than those of other algorithms. In the

next section we analyze the performances of the proposed clustering algorithms and

compared them with that of the set-cover algorithm.

7. if (|Cj|'s movement < the capacity of a database)

 then return; // do not split any further

 else if (|Cj| > k)

 then Cj=Top-down Approach(Cj, N/k)

Figure 5. The Hierarchical System Constructed with the Set-cover Algorithm for the Sample

Network in Figure 4(a).

Three Effective Top-Down Clustering Algorithms for Location Database Systems 181

Journal of Computing Science and Engineering, Vol. 4, No. 2, June 2010

4. EXPERIMENTAL RESULTS

We tested the performances of the proposed clustering algorithms and the set-cover

algorithm under various experimental environments. The experiments were performed

on a PC with Core2Quad Q6600 2.4 Ghz processor, 8 GBytes RAM, and Vista 64 bits.

The experimental parameters are given in Table I. We assumed that a tree for the

hierarchical system is a full ternary tree. The numbers of cells in the networks are

assumed to be 34, 36, and 38. The average number of users in a cell of the network

is assumed to be 15 by analyzing the experiments done in [hin and Süral 2007].

Hence, for example, when the network size is 38, there are 38×15=98,415 users in the

network on the average.

For the users’ movements in the networks, we define the number of boundary

crossings as the number of movements made by all the users between two cells in the

network; that is, the average number of boundary crossings is the sum of the weights

of all the edges in the network divided by the number of edges. We made five input

networks for each network size and each network has ten variants by changing the

average number of boundary crossings from 2 to 20 with an increment of 5. We tested

four different capacities for a database; they are 500, 1000, 1500, and 2000. Note that

we assumed that all the databases in the system have the same capacity for the

experiments.

The following three figures show the update costs, update times, and numbers of

databases used for the cell size 34, varying the number of boundary crossings from 2

to 20 with an increment of 2.

When there are 34 cells, the proposed algorithms have reduced the update costs

with respect to the set-cover algorithm, while the modified top-down was better than

the top-down algorithm and the capacity constraint algorithms showed the best

performance. We can acknowledge that the capacity constraint algorithm constructs

a tree with a smaller height as the capacity increases. The update cost of the capacity

constraint algorithm becomes almost the same as that of the top-down algorithm as

the number of boundary crossings increases, because if the movements are increased

we need a larger number of databases.

Regarding the update time, the top-down algorithm exhibits the best performance

because the set-cover algorithm always calculates the movements of between a pair

of all the cells during each recursive call while the top-down algorithm calculates the

movements between a pair of the cells involved only with the current recursive call.

Observe that the modified top-down algorithm shows longer update times, since it

Table I. Experiment Parameters.

Parameters Values

the number of children of each node in a tree 3

the number of cells 34, 36, 38

the average number of users in a cell 15

the average number of boundary crossings 2-20

the capacity of a database 500, 1,000, 1,500, 2,000

182 Kwang-Jo Lee and Sung-Bong Yang

Journal of Computing Science and Engineering, Vol. 4, No. 2, June 2010

Figure 6. Update Costs for 34 Cells.

Figure 7. Update Times for 34 Cells.

Figure 8. Numbers of Databases Used for 34 Cells.

Three Effective Top-Down Clustering Algorithms for Location Database Systems 183

Journal of Computing Science and Engineering, Vol. 4, No. 2, June 2010

Figure 9. Update Costs for 36 Cells.

Figure 10. Update Times for 36 Cells.

Figure 11. Numbers of Databases Used for 36 Cells.

184 Kwang-Jo Lee and Sung-Bong Yang

Journal of Computing Science and Engineering, Vol. 4, No. 2, June 2010

Figure 12. Update Costs for 38 Cells.

Figure 13. Update Times for 38 Cells.

Figure 14. Numbers of Databases Used for 38 Cells.

Three Effective Top-Down Clustering Algorithms for Location Database Systems 185

Journal of Computing Science and Engineering, Vol. 4, No. 2, June 2010

tries to find the optimal clustering when the cell size is 9. For the number of

databases required for the system, it is obvious that the set-cover, top-down, and

modified top-down algorithms require the same number of databases, since they

create full n-ary trees. But for the capacity constraint algorithm, the number of

databases increases as the number of boundary crossings increases. The following six

figures show the update costs, update times, and numbers of databases used for the

cell sizes 36 and 38, varying the number of boundary crossings from 2 to 20 with an

increment of 2.

When the numbers of cells are 36 and 38, we obtained similar results to those for

34. For the update cost, our proposed algorithms perform well as the cell size becomes

larger. Note that the capacity constraint top-down clustering algorithm with 2,000 as

the database capacity has the shortest update time among all the results. Such a

result is possible since the tree constructed with the algorithm has the smallest

number of databases and has a lower height.

The following table compares the performances of the algorithms for the average

update cost, update time, and number of databases used. The ‘percent’ column of each

parameter indicates the improvement of an algorithm in a percentage with respect to

the set-cover algorithm.

The proposed, top-down, modified top-down, and capacity constraint top-down

clustering algorithms reduce the update cost by 17.0%, 18.0%, 24.1%, the update time

by about 43.0%, 39.0%, 42.3% over the set-cover algorithm, respectively. The results

also show that the capacity constraint algorithm reduces the average number of

databases used for the system by 23.9% over other algorithms.

5. CONCLUSIONS

In a wireless environment, the location database management needs to be done as

efficiently as possible. When the size of a network increases, updating the location

databases may degrade the performance of the system. In this paper, we have

proposed a clustering algorithm to reduce both the update cost of the location

databases and the update time in the hierarchical system. The proposed algorithm

exploits the visit counts of the cells in finding the seeds of clusters. Afterwards, each

Table II. Average Experiment Results.

parameters
update cost update time no. of databases used

x 1,000 % seconds % %

set-cover algorithm 20,255 - 2,573 -

3684.7 -top-down algorithm 16,803 17.0 1,468 43.0

modified top-down algorithm 16,607 18.0 1,569 39.0

capacity

constraint

top-down

clustering

algorithm

ca
p
a
ci
ty

 500 16,300 19.5 1,436 44.2 3314.8 10.0

1,000 15,876 21.6 1,512 41.3 2991.0 18.8

1,500 15,158 25.1 1,565 39.2 2636.6 28.4

2,000 14,202 29.9 1,430 44.4 2276.5 38.2

186 Kwang-Jo Lee and Sung-Bong Yang

Journal of Computing Science and Engineering, Vol. 4, No. 2, June 2010

cluster gathers the cells greedily using the movement information with a top-down

approach. We also proposed a modified version of the top-down clustering algorithm

that incorporates the exhausted method for finding the optimal clustering at a lower

level of the tree.

The set-cover algorithms and the two proposed algorithms do not consider the

capacity of a database. But the capacity factor allows us to construct a tree for a

hierarchical system with less number of databases as well as a possibly lower height,

as we have a larger capacity of a database. The capacity constraint top-down

clustering algorithm we proposed is able to suggest a proper size of the capacity in

practice.

We tested and compared the proposed algorithms against the set-cover algorithm

with various inputs. The experimental results showed that the top-down clustering

algorithm performed quite well especially when the network size is large and

improved the update cost by 17.0% over the set-cover algorithm. It can be seen that

the seed in building up a cluster played a pivotal role and the top-down way of

splitting preserved the cohesiveness of the cells in a cluster. The results also show

that the modified top-down algorithm reduced the update cost by 18.0% over the set-

cover algorithm. The partial optimal values could reduce the update cost further. The

results also show that the capacity constraint top-down clustering algorithm reduced

the update cost by 24.1% over the set-cover algorithm. It uses a smaller number of

databases than other algorithms. The proposed, top-down, modified top-down, and

capacity constraint top-down clustering algorithms reduce the update time by about

43.0%, 39.0%, 42.3% over the set-cover algorithm, respectively. The results also show

that the capacity constraint algorithm reduces the average number of databases used

for the system by 23.9% over other algorithms. All the results show that the

scalability problem of the location database management in the wireless network had

been resolved to some extent.

ACKNOWLEDGMENTS

This work was supported by the Korea Science and Engineering Foundation (KOSEF)

for the research (2010-0015846).

REFERENCES

CHVÁTAL, V. 1979. A greedy-heuristic for the set covering problem. Math. Oper. Res. 4, 233–235.

FRATTASI, S., FATHI, H., FITZEK, F., PRASAD, R., AND KATZ, M. 2006. Defining 4G technology from

the users perspective. IEEE Network.

JIXIONG, C., GUOHUI, L., HUAJIE, X., XIA, C., AND BING, Y. 2005. Location database clustering to

achieve location management time cost reduction in a mobile computing system. Wireless

Communications, Networking and Mobile Computing 2, 23-26, 1328–1332.

LI, G., LAM, K., KUO, T., AND WU, S. 2004. Location management in cellular mobile computing

systems with dynamic hierarchical location databases. Journal of Systems and Software 69,

1–2, 159–171.

NAM, C., KIM, S., AND LEE, H. 2008. The role of wibro: filling the gaps in mobile broadband

technologies. Vehicular Technology Magazine.

PITOURA, E. AND SAMARAS, G. 2001. Locating objects in mobile computing. IEEE Transactions on

Knowledge and Data Engineering 13, 571–592.

Three Effective Top-Down Clustering Algorithms for Location Database Systems 187

Journal of Computing Science and Engineering, Vol. 4, No. 2, June 2010

RAHAMAN, A., ABAWAJY, J., AND HOBBS, M. 2007. Taxonomy and survey of location management

systems. IEEE International Workshop on Component-Based Software Engineering 369–374.

HIN G. AND SÜRAL, H. 2007. A review of hierarchical facility location models. Elsevier Science

Ltd.

ZHENG, K., HUANG, L., LI, G., CAO, H., WANG, W., AND Dohler, M. 2008. Beyond 3G evolution.

Vehicular Technology Magazine.

Kwang-Jo Lee received the B.S. in Computer Engineering from Sejong

University Seoul, Korea, in 2007 and M.S. degrees in Computer Science
from Yonsei University. He is currently a Ph.D. Candidate in Computer

Science at Yonsei University. His research interests include Mobile

Computing, Mobile Network, and 3D Graphics.

Sung-Bong Yang received Ph.D. degree in Computer Science from the

University of Oklahoma in 1992. He has been a faculty member at the

Department of Computer Science, Yonsei University, Seoul, Korea, since
1994. His research interests include Mobile Systems, Peer-to-Peer

Computing, and 3D Graphics.

