Call for Papers
About the Journal
Editorial Board
Publication Ethics
Instructions for Authors
Announcements
Current Issue
Back Issues
Search for Articles
Categories
Search for Articles
 

JCSE, vol. 8, no. 1, pp.1-10, 2014

DOI: http://dx.doi.org/10.5626/JCSE.2014.8.1.1o

Analysis and Improvement of the Bacterial Foraging Optimization Algorithm

Jun Li, Jianwu Dang, Feng Bu, and Jiansheng Wang
Lanzhou Jiaotong University, Lanzhou , China / Key Laboratory of Opto-electronics Technology and Intelligent Control, Ministry of Education, Lanzhou , China

Abstract: The Bacterial Foraging Optimization Algorithm is a swarm intelligence optimization algorithm. This paper first analyzes the chemotaxis, as well as elimination and dispersal operation, based on the basic Bacterial Foraging Optimization Algorithm. The elimination and dispersal operation makes a bacterium which has found or nearly found an optimal position escape away from that position, which greatly affects the convergence speed of the algorithm. In order to avoid this escape, the sphere of action of the elimination and dispersal operation can be altered in accordance with the generations of evolution. Secondly, we put forward an algorithm of an adaptive adjustment of step length we called improved bacterial foraging optimization (IBFO) after making a detailed analysis of the impacts of the step length on the efficiency and accuracy of the algorithm, based on chemotaxis operation. The classic test functions show that the convergence speed and accuracy of the IBFO algorithm is much better than the original algorithm.

Keyword: Bacterial Foraging optimization algorithm; Chemotaxis; Step; Elimination and dispersal; Escape

Full Paper:   365 Downloads, 2337 View

 
 
ⓒ Copyright 2010 KIISE – All Rights Reserved.    
Korean Institute of Information Scientists and Engineers (KIISE)   #401 Meorijae Bldg., 984-1 Bangbae 3-dong, Seo-cho-gu, Seoul 137-849, Korea
Phone: +82-2-588-9240    Fax: +82-2-521-1352    Homepage: http://jcse.kiise.org    Email: office@kiise.org