Call for Papers
About the Journal
Editorial Board
Publication Ethics
Instructions for Authors
Announcements
Current Issue
Back Issues
Search for Articles
Categories
Search for Articles
 

JCSE, vol. 10, no. 3, pp.75-84, 2016

DOI: http://dx.doi.org/10.5626/JCSE.2016.10.3.75

Data-driven Adaptive Safety Monitoring Using Virtual Subjects in Medical Cyber-Physical Systems: A Glucose Control Case Study

Sanjian Chen, Oleg Sokolsky, James Weimer, and Insup Lee
Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA, USA

Abstract: Medical cyber-physical systems (MCPS) integrate sensors, actuators, and software to improve patient safety and quality of healthcare. These systems introduce major challenges to safety analysis because the patient's physiology is complex, nonlinear, unobservable, and uncertain. To cope with the challenge that unidentified physiological parameters may exhibit short-term variances in certain clinical scenarios, we propose a novel run-time predictive safety monitoring technique that leverages a maximal model coupled with online training of a computational virtual subject (CVS) set. The proposed monitor predicts safety-critical events at run-time using only clinically available measurements. We apply the technique to a surgical glucose control case study. Evaluation on retrospective real clinical data shows that the algorithm achieves 96% sensitivity with a low average false alarm rate of 0.5 false alarm per surgery.

Keyword: Medical cyber-physical systems; Data-driven approach; Computational Virtual Subjects; Safety

Full Paper:   403 Downloads, 1637 View

 
 
ⓒ Copyright 2010 KIISE – All Rights Reserved.    
Korean Institute of Information Scientists and Engineers (KIISE)   #401 Meorijae Bldg., 984-1 Bangbae 3-dong, Seo-cho-gu, Seoul 137-849, Korea
Phone: +82-2-588-9240    Fax: +82-2-521-1352    Homepage: http://jcse.kiise.org    Email: office@kiise.org