Call for Papers
About the Journal
Editorial Board
Publication Ethics
Instructions for Authors
Announcements
Current Issue
Back Issues
Search for Articles
Categories
Search for Articles
 

JCSE, vol. 11, no. 1, pp.1-8, 2017

DOI: http://dx.doi.org/10.5626/JCSE.2017.11.1.1

Memory-Efficient NBNN Image Classification

YoonSeok Lee and Sung-Eui Yoon
School of Computing, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea

Abstract: Naive Bayes nearest neighbor (NBNN) is a simple image classifier based on identifying nearest neighbors. NBNN uses original image descriptors (e.g., SIFTs) without vector quantization for preserving the discriminative power of descriptors and has a powerful generalization characteristic. However, it has a distinct disadvantage. Its memory requirement can be prohibitively high while processing a large amount of data. To deal with this problem, we apply a spherical hashing binary code embedding technique, to compactly encode data without significantly losing classification accuracy. We also propose using an inverted index to identify nearest neighbors among binarized image descriptors. To demonstrate the benefits of our method, we apply our method to two existing NBNN techniques with an image dataset. By using 64 bit length, we are able to reduce memory 16 times with higher runtime performance and no significant loss of classification accuracy. This result is achieved by our compact encoding scheme for image descriptors without losing much information from original image descriptors.

Keyword: Image classification; NBNN; Hashing; Memory efficiency; Indexing

Full Paper:   386 Downloads, 1574 View

 
 
ⓒ Copyright 2010 KIISE – All Rights Reserved.    
Korean Institute of Information Scientists and Engineers (KIISE)   #401 Meorijae Bldg., 984-1 Bangbae 3-dong, Seo-cho-gu, Seoul 137-849, Korea
Phone: +82-2-588-9240    Fax: +82-2-521-1352    Homepage: http://jcse.kiise.org    Email: office@kiise.org