Call for Papers
About the Journal
Editorial Board
Publication Ethics
Instructions for Authors
Announcements
Current Issue
Back Issues
Search for Articles
Categories
Search for Articles
 

JCSE, vol. 16, no. 3, pp.178-184, 2022

DOI: http://dx.doi.org/10.5626/JCSE.2022.16.3.178

Switching DNN for Autonomous Driving System

Yu-Seung Ma, Hojae Han and Seung-won Hwang
Electronics and Telecommunications Research Institute, Daejeon, Korea Dept. of Computer Science and Engineering, Seoul National University, Seoul, Korea

Abstract: In autonomous driving system, building a rigorous object detection model unaffected by conditions, such as weather or time-of-day, is essential for safety. However, as deep learning models are often limited in generalizability, training over the entire data collection can be suboptimal, e.g., daytime training instances hinder the training for nighttime prediction. We call this curse of multitasking (CoM), which was first observed in multilingual training, where training a multilingual model can be suboptimal, compared to multiple monolingual models. Our contribution is observing CoM in autonomous driving, overcoming the problem by building multiple mono-task models, or specialized experts for each task, then switching models according to the input condition, enhancing the overall effectiveness of the detection model. We show the effectiveness of using the proposed strategy in both YOLOv3 and RetinaNet models on BDD dataset.

Keyword: Deep neural network; Object-detection; Autonomous driving; Software engineering

Full Paper:   131 Downloads, 828 View

 
 
ⓒ Copyright 2010 KIISE – All Rights Reserved.    
Korean Institute of Information Scientists and Engineers (KIISE)   #401 Meorijae Bldg., 984-1 Bangbae 3-dong, Seo-cho-gu, Seoul 137-849, Korea
Phone: +82-2-588-9240    Fax: +82-2-521-1352    Homepage: http://jcse.kiise.org    Email: office@kiise.org