Call for Papers
About the Journal
Editorial Board
Publication Ethics
Instructions for Authors
Announcements
Current Issue
Back Issues
Search for Articles
Categories
Search for Articles
 

JCSE, vol. 1, no. 1, pp.74-94, 2007

DOI:

Hiding Sensitive Frequent Itemsets by a Border-Based Approach

Xingzhi Sun Philip S. Yu
IBM China Research Lab, Beijing, China|IBM Watson Research Center, Hawthorne, NY, USA

Abstract: Nowadays, sharing data among organizations is often required during the business collaboration. Data mining technology has enabled efficient extraction of knowledge from large databases. This, however, increases risks of disclosing the sensitive knowledge when the database is released to other parties. To address this privacy issue, one may sanitize the original database so that the sensitive knowledge is hidden. The challenge is to minimize the side effect on the quality of the sanitized database so that non-sensitive knowledge can still be mined. In this paper, we study such a problem in the context of hiding sensitive frequent itemsets by judiciously modifying the transactions in the database. Unlike previous work, we consider the quality of the sanitized database especially on preserving the non-sensitive frequent itemsets. To preserve the non-sensitive frequent itemsets, we propose a border-based approach to efficiently evaluate the impact of any modification to the database during the hiding process. The quality of database can be well maintained by greedily selecting the modifications with minimal side effect. Experiments results are also reported to show the effectiveness of the proposed approach.

Keyword: No keyword

Full Paper:   140 Downloads, 4618 View

 
 
ⓒ Copyright 2010 KIISE – All Rights Reserved.    
Korean Institute of Information Scientists and Engineers (KIISE)   #401 Meorijae Bldg., 984-1 Bangbae 3-dong, Seo-cho-gu, Seoul 137-849, Korea
Phone: +82-2-588-9240    Fax: +82-2-521-1352    Homepage: http://jcse.kiise.org    Email: office@kiise.org